Зрительные отделы головного мозга (версия Миг)

Icons-mini-icon 2main.png Основная статья: Цветное зрение
Рис.1. Мозг человека, вид сзади. Красным цветом обозначена первичная зрительная кора V1 (поле Бродмана 17) ; оранжевым — поле 18; жёлтым — поле 19.[1]
Рис.2. Мозг человека, вид слева. Вверху: латеральная поверхность, внизу: медиальная поверхность. Оранжевым цветом обозначено поле Бродмана 17 (первичная, или стриарная, зрительная кора)[2]
Рис.3. Дорсальный (зелёный цвет) и вентральный (сиреневый цвет) зрительные пути, берущие начало в первичной зрительной коре.[3]

Зрительная кора (англ. visual cortex) является частью коры больших полушарий головного мозга, отвечающая за обработку зрительной информации. Главным образом она сосредоточена в затылочной доле каждого из полушарий головного мозга[4].

Оппонентно выделенные самые яркие сигналы видимых лучей света S,M,L — КЗС (не в цвете), сфокусированных предметных точек на экстерорецепторы (версия Миг) колбочки сетчатки глаза (рецепторный уровень), по зрительным нервам пересылаются сюда, в зрительную кору. Здесь формируется бинокулярное (стерео) цветное оптическое изображение (нейронный уровень). Впервые, субъективно мы ощущаем цвет (версия Миг), который является лично нашим. (При определении цвета методом колориметрии цвет оценивается данными среднестатистического наблюдателя большой группы здоровых людей)

Понятие зрительная кора включает первичную зрительную кору (также называемую стриарной корой или зрительной зоной V1) и экстрастриарную зрительную кору — зоны V2, V3, V4, и V5. (См. о зонах V2, V3, V4, и V5 в статье Зрительная кора)

Первичная зрительная кора анатомически эквивалентна полю Бродмана 17, или BA17. Экстрастриарная зрительная кора включает поля Бродмана 18 и 19[4].

Зрительная кора присутствует в каждом из полушарий головного мозга. Области зрительной коры левого полушария получают сигналы от правой половины зрительного поля, правого полушария — получают сигналы от левой половины.

В дальнейшем в статье будет говориться об особенностях зрительной коры приматов (в основном, человека).[5]

ВведениеПравить

 
Рис.4,Схема цветного зрения с точки зрения трёхкомпонентной теории

Зрительные отделы головного мозга — восприятие цвета и света, получение оптического изображения в коре головного мозга — второй, окончательный этап работы зрительной системы образования оптического видения в зрительных отделах головного мозга (см. рис.3,4).

Даже на начальном этапе визуального восприятия света и цвета в визуальной системе, в пределах сетчатки, проходя через начальные цветные механизмы «противника».

 
Рис.3a. Оптические тракты после встречи сигналов от правого и левого глаза в слои коленчатого тела

Известно, что механизмы противника обращаются к противостоящему цветовому эффекту красно-зелёных, синих-жёлтых и чёрно-белых цветов. (См.Теория оппонентного цветного зрения (версия Миг)). При этом визуальная информация возвращается назад через зрительный нерв к оптическому перекрёстку, где два оптических нерва встречаются и информация от временных (контралатеральных) визуальных полевых перекрёстков до противоположной стороны мозга. После оптического перекрёстка зрительные тракты нервного волокна упоминаются как оптические тракты, которые входят в таламус en:Thalamus через синапс в боковом латеральном коленчатом теле (ЛКТ). ЛКТ является отдельным отделом головного мозга из шести слоёв: два магноцеллюлярных (большая клетка) бесцветные слои (М. клеток) и четырёх parvocellular (маленькая клетка) цветных слоёв (P клетки). В пределах слоев P-клетки ЛКТ есть два цветных типа противника: красного против зелёного и синего против жёлтого (зелёного/красного).

После синапсиса в ЛКТ, визуальные тракты продвигается назад к первичной зрительной коре (ПВК-V1), расположенной позади мозга в пределах затылочной доле. В пределах V1 слоя наружного коленчатого тела есть отличная полоса (бороздчатость). Это также упоминается «как полосатая кора», с другими корковыми визуальными областями, упомянутыми все вместе как «extrastriate кора». На данном этапе цветная обработка становится намного более сложной.

Первичная зрительная кора (VI)Править

 
Рис.4. Мозг человека.
Красным цветом обозначена первичная зрительная кора (зрительная зона V1)
 
Рис.5.Микрофотография показывает зрительную кору (розовый цвет). В pia mater и паукообразные в том числе кровеносные сосуды видны в верхней части изображения. Подкорковое белое вещество (синий) - это видно в нижней части изображения. ОН-LFB пятно..

Первичная зрительная кора — наиболее изученная зрительная зона мозга. Исследования показали, что у млекопитающих она занимает задний полюс затылочной доли каждого полушария (эти доли ответственны за обработку зрительных стимулов). Это наиболее просто устроенная[6] и филогенетически более «старая» из кортикальных зон, связанных со зрением. Она приспособлена для обработки информации о статических и движущихся объектах, в особенности, для распознавания простых образов.

Составная часть функциональной архитектуры коры больших полушарий головного мозга — первичная зрительная кора — практически полностью соответствует анатомически определяемой стриарной коре. Название последней восходит к латинскому «полоса, полоска» (лат. stria) и во многом обусловлено тем, что здесь отчётливо видна невооружённым глазом полоска Дженнари[en] (наружная полоска Байярже), образованная конечными отделами покрытых миелиновой оболочкой аксонов, отходящих от нейронов латерального коленчатого тела и заканчивающихся в IV слое серого вещества.

Первичная зрительная кора подразделяется на шесть функционально различающихся горизонтальных цитоархитектонических слоёв (см. рис.К), обозначаемых римскими цифрами от I до VI[4][7].

Слой IV (внутренний зернистый слой[7]), к которому подходит наибольшее количество афферентных волокон, идущих от латеральных коленчатых тел (ЛКТ), в свою очередь, подразделяется на четыре подслоя, обозначаемых IVA, IVB, IVCα и IVCβ. Нервные клетки подслоя IVCα, в основном, получают сигналы, идущие от нейронов магноцеллюлярных («крупноклеточных», вентральных) слоёв ЛКТ[8]магноцеллюлярный зрительный путь»), подслоя IVCβ — от нейронов парвоцеллюлярных («мелкоклеточных», дорсальных) слоёв ЛКТ[8]парвоцеллюлярный зрительный путь»).

Полагают, что среднее число нейронов первичной зрительной коры взрослого человека составляет около 140 миллионов в каждом полушарии[9].

ФункцияПравить

 
Рис.К. Полоса 6 — первичная зрительная кора (также называемую стриарной корой или зрительной зоной V1. Схема диаграммы P-клеткок нейронв, расположенных в пределах parvocellular слоев коленчатого ядра (LGN) таламуса

Первичная зрительная кора (V1) имеет очень четкие карты пространственной информации при зрении. Например, у людей верхняя половина области calcarine ("шпоры") трещины отвечает на поступающие зрительные сигналы сильно. От нижней половины поля зрения области calcarine поток идёт в верхнюю половину поля зрения. Концептуально, это (retinotopic) или это отображение визуальной информации от сетчатки, нейронов, особенно визуального потока нейронов. Так происходит картирование — трансформация визуального оптического изображения от сетчатки в зону V1.

Соответствие данного расположения в зоне V1 и в субъективнои поле зрения — это соотносится очень точно: даже слепые пятна сетчатки сопоставляются с зоной данными в V1. С точки зрения эволюции, эта переалресация очень просто происходит у самых животных, которые обладают зоной V1. У животных и человека с fovea (центра макулы — жёлтого пятна) в сетчатке, большая часть зоны V1 сопоставляется с небольшой Центральной частью поля зрения. Явление, известное как корковые увеличения. Возможно, с целью точного пространственного кодирования, нейроны в V1, имеют наименьшие рецептивное поле размеров любой зрительной коры или микроскопические участки.

Настройка свойств нейронов зоны V1 (реакции нейронов) отличаются значительно с течением времени. В начале времени (40 мс и далее) время настройки отдельных нейронов V1 имеют сильные (тюнинг) характеристики воздействия небольшого набора стимулов. То есть ответы неёронов могут различаться небольшими изменениям в зрительной ориентации пространственных частот и цвета. Более того, отдельные нейроны человека и животных зоны V1 бинокулярного зрения у глазной системы, а именно : настройка одного из двух глаз. В зоне V1 и первичной сенсорной коре головного мозга в целом, нейроны с аналогичными настройки свойств имеют тенденцию объединяться в виде корковых столбцов. Дэвид Hubel и Торстен Визель предложены классические "кубики льда" — модель организации корковых столбцов для настройки двух свойств: глазных доминирований и ориентации. Однако эта модель не может вместить цвет, пространственную частоту и много других возможностей, которые настраивают нейроны [цитата]. Точная организация всех этих корковых столбцов в зоне V1 остается горячей темой настоящего исследования.

Текущий консенсус таков, что кажется, ответы работы нейронов зоны V1 состоят из плиточной структуры, которые представляют селективные пространственно-временные фильтры. Функционирование зоны V1 в пространственной области можно рассматривать как аналог множества пространственно-местных — комплекс Преобразования Фурье или ,точнее, трансформирование Габора. Теоретически эти фильтры вместе могут осуществлять обработку нейронов пространственной частоты, ориентацию, движение, направление, скорость (временной частоты), и многие другие пространственно-временные характеристики. Требуются эксперименты нейронов для обоснования этих теории, но постановку новых вопросв.

В более позднее время (после 100 ms) воздействия на нейроны зоны V1 они также чувствительны к более глобальной организациии сцены (Lamme & Roelfsema, 2000). Эти параметры ответа, вероятно, обусловлены повторяющейся обработкой (при влиянии высокого уровня областей коры головного мозга на нижний ярус областей коры головного мозга) и горизонтальными связями от пирамидных нейронов (хьюп et al. 1998). В то время как прямые соединения, в основном, в процессе работы, обратной связи, в основном — модуляторные с их последствиями (Angelucci et al., 2003; хьюп et al., 2001). Опыт показывает, что обратная связь, происходящих в более высшем уровне, в таких областях, как V4 ОН или MT, с более крупных и сложных рецептивных полей, может изменить и форму ответов зоны V1, учета контекстных или экстра-классических рецептивных полей эффекта (Guo et al., 2007; Huang et al., 2007; Sillito et al., 2006).

Визуальная информация передана зоне V1 не закодирована в терминах пространственной (или оптический) съемки, но, скорее это — локальный контраст. Например, для изображения, состоящего наполовину со стороной черного и половины стороны с белым цветом, разрыв строки между черным и белым представляет сильные местные контрасты и кодируется, и в то же время в виде нескольких нейронов кода информация о яркости (черный или белый per se). В качестве информации дальнейшей ретрансляции в последующие зрительные зоны, в ней закодированы также все нелокальные частоты, фазы сигналов. Главное, что на таких ранних этапах корковой визуальной обработки, пространственное расположение визуальной информации хорошо сохранилось на фоне локального контраста кодирования.[10]

Принцип оппонентности в отборе цветовых сигналовПравить

 
Схема трихроматизма с оппонентным отбором цвета
 
Принципиальная схема трёхкомпонентрого цветного зрения человека, приматов с оппонентным отбором самых ярких основных лучей света КЗС с последующей передачей цветовых сигналов S,M,L в мозг

Принцип оппонентности отбора основных световых сигналов S,M,L — КЗС — теория, которая определяет способ, которым сетчатка (версия Миг) человеческого глаза позволяет зрительной системе на нейронном уровне в коре голоаного мозга ощущать цвет (версия Миг). Это происходит на уровне восприятия видимых лучей (рецепторном) тремя разновидностями колбочек RGB (S,M.,L), на базе оппонентного отбора цвета (белый-чёрный, красный-зелёный, синий-жёлтый) с последущей передачей сигналов в мозг.[11][12]

Оптические изображения в мозгу и в фотографииПравить

Оптическое изображение в мозгуПравить

На основании вышеизложенного видно, что оптическое изображение (или предметные точки) на фокальной поверхности — сетчатке (биологическом фотосенсоре) как и в фотографии воспринято клетками, состоящими из определённого количества фотодатчиков (пикселей), например, колбочек, чувствительных к основным спектральным лучам, например, к красному, зелёнрму, синему (RGB). Сигналы фотодатчиков или фоторецепторов колбочек (их количество около 6 млн.) по строго связанной биологической системе передачи их при помощи синапсов по нерным каналам, которых насчитано примерно около 1,2 млн., передаюрся в головной мозг. Возникае вопрос, как это 6 млн. сигналов, трансдукцируемых синими, зелёными, красными колбочками каждого блока или от 2млн. клеток могут передаться по 1,2млн. каналов? При этом следует учесть работу экстерорецепторов (фотодатчиков) ганглиозного слоя сетчатки ipRGC, синапсически связанных прямой и обратной связью с колбочками, палочками и с головным мозгом, содержащими фотопигмент меланопсин, которые способны подавлять или усиливать фототрансдукцию биосигналов палочек и колбочек.[цитата, необходимая].

На начальном этапе визуального восприятия света и цвета (в пределах сетчатки) восприятие цвета начинается на раннем уровне в визуальной системе — уже в пределах сетчатки, проходя через начальные цветные механизмы «противника» — оппоннтного отбора наиболее ярких сигналов.

После синапсиса в LGN, визуальные тракты продвигается назад к первичной визуальной коре (ПВК-V1)en:Visual_cortex, расположенной позади мозга в пределах затылочного лепестка en:Occipital_lobe. В пределах V1 слоя наружного коленчатого тела есть отличная полоса (бороздчатость). Это также упоминается «как полосатая кора» с другими корковыми визуальными областями, упомянутыми все вместе как «extrastriate кора». На данном этапе цветная обработка становится намного более сложной.

В итоге, созданный природой биологический АЦП (на уровне сетчатки и головного мозга) — уникальная биологическая система преобразования и получения оптического изобраежия (цветного и серого) в мозгу (в том числе и стерео). Достижения в области фотографии цветной, стерео ещё далеки от совершенства этих визуальных биологических систем, созданных природой, обладая которыми мы каждый день визуально наслаждаемся окружающим нас красочным миром.

Оптическое изображение в фотографииПравить

  Основная статья: Фильтр Байера

Смотри такжеПравить

ПримечанияПравить

  1. http://en.wikipedia.org/wiki/Visual_cortex
  2. http://en.wikipedia.org/wiki/Visual_cortex
  3. http://en.wikipedia.org/wiki/Visual_cortex
  4. а б в Часть III. Общая и специальная сенсорная физиология // Физиология человека: в 3-х томах = Human Physiology. Ed. by R.F. Schmidt, G. Thews. 2nd, completely revised edition (translated from German by M.A. Biederman-Thorson) ‭. Т. 1. Пер. с англ.. — изд-е 2-е, перераб. и дополн.. — М.: Мир, 1996. — С. 178-321. — 323 с. — ISBN 5-03-002545-6о книге
  5. http://en.wikipedia.org/wiki/Visual_cortex
  6. Хьюбел Д., Т. Визель Центральные механизмы зрения // Мозг (перевод с английского специального выпуска журнала Scientific American, 1979). — М.: Мир, 1982. — 279 с.о книге
  7. а б Быков В. Л. Кора полушарий большого мозга // Частная гистология человека. — СПб.: СОТИС, 2001. — С. 260—271. — 304 с. — ISBN 5-85503-116-0о книге
  8. а б Хьюбел Д. Глаз, мозг, зрение = Eye, Brain and Vision ‭. — М.: Мир, 1990. — 239 с. — ISBN 5-03-001254-0о книге
  9. Leuba G, Kraftsik R (1994). "Changes in volume, surface estimate, three-dimentional shape and total number of neurons of the human primary visual cortex from midgestation until old age". Anatomy and Embryology 190 (4): 351-366. PMID 7840422.
  10. http://en.wikipedia.org/wiki/Visual_cortex
  11. Трихроматия
  12. http://physiologyonline.physiology.org/content/17/3/93.full.

Шаблон:Глаз и Зрение

  1. перенаправление шаблон:цвета радуги