Сканирующий электронный микроскоп

Изображение пыльцы

Сканирующий электронный микроскоп (англ. Scanning Electron Microscope, SEM) — прибор, позволяющий получать изображения поверхности образца с большим разрешением (менее 1 микрометра). Применение дополнительных ситем позволяет получать информацию о химическом составе приповерхностных слоёв.

Принцип работыПравить

Исследуемый образец в условиях промышленного вакуума сканируется сфокусированным электронным пучком средних энергий. В зависимости от механизма регистрирования сигнала различают несколько режимов работы сканирующего электронного микроскопа: режим отражённых электронов, режим вторичных электронов, режим катодолюминесценции и т. д. Разработанные методики позволяют исследовать не только свойства поверхности образца, но и визуализировать и получать информацию о свойствах подповерхностных структур.

Режимы работыПравить

Детектирование вторичных электроновПравить

Детекторы вторичных электронов — первый и традиционно устанавливаемый на все РЭМ тип детекторов. В этом режиме разрешающая способность РЭМ максимальна. Разрешение детекторов вторичных электронов в современных приборах уже достаточно для наблюдения субнанометровых объектов. Из-за очень узкого электронного луча РЭМ обладают очень большой глубиной резкости (0,6-0,8 мм), что на два порядка выше, чем у оптического микроскопа и позволяет получать четкие микрофотографии с характерным трехмерным эффектом для объектов со сложным рельефом. Это свойство РЭМ крайне полезно для понимания поверхностной структуры образца.

Вторичные электроны. В результате взаимодействия с атомами образца электроны первичного пучка могут передать часть своей энергии электронам из зоны проводимости, то есть слабо связанным с атомами. В результате такого взаимодействия может произойти отрыв электронов и ионизация атомов. Такие электроны называются вторичными. Эти электроны обычно обладают небольшой энергией (порядка 50 эВ). Любой электрон первичного пучка обладает энергией, достаточной для появления нескольких вторичных электронов.

Так как энергия вторичных электронов невелика, их выход возможен только с приповерхностных слоев материала (менее 10 нм). Благодаря небольшой кинетической энергии эти электроны легко отклоняются небольшой разностью потенциалов. Это делает возможным существенно повысить эффективность детекторов и получить высококачественные изображения с хорошим отношением сигнал/шум и разрешением порядка 4 нм при диаметре пучка 3 нм.

Принимая во внимание, что вторичные электроны генерируются приповерхностными слоями, они очень чувствительны к состоянию поверхности. Минимальные изменения отражаются на количестве собираемых электронов. Таким образом этот тип электронов несет в себе инфорамцию о рельефе образца.

Детектирование отраженных электроновПравить

Отражённые электроны (ОЭ) — это электроны пучка, отражённые от образца упругим рассеиванием. ОЭ часто используются в аналитическом РЭМ совместно с анализом характеристических спектров рентгеновского излучения. Поскольку интенсивность сигнала ОЭ напрямую связана со средним атомным номером (Z) засвечиваемой области образца, изображения ОЭ несут в себе информацию о распределении различных элементов в образце.

Разрешающая способность (оптика)Править

Пространственное разрешение сканирующего электронного микроскопа зависит от поперечного размера электронного пучка, который в свою очередь зависит от электронно-оптической системы, фокусирующей пучок. Разрешение также ограничено размером области взаимодействия электронного зонда с образцом, т. е. от материала мишени. Размер электронного зонда и размер области взаимодействия зонда с образцом намного больше расстояния между атомами мишени, таким образом, разрешение сканирующего электронного микроскопа не настолько велико, чтобы отображать атомарные масштабы, как это возможно, например, в просвечивающем электронном микроскопе. Однако, сканирующий электронный микроскоп имеет свои преимущества, включая способность визуализировать сравнительно большую область образца, способность исследовать массивные мишени (а не только тонкие пленки), а также разнообразие аналитических методов, позволяющих измерять фундаментальные характеристики материала мишени. В зависимости от конкретного прибора и параметров эксперимента, может быть получено разрешение от десятков до единиц нанометров.

ПрименениеПравить

Сканирующие микроскопы применяются в первую очередь как исследовательский инструмент в физике, электронике, биологии. В основном это получение картинки исследуемого образца, которая может сильно меняться в зависимости от применяемого типа детектора. Эти различия позволяют делать вывод о физике поверхности, проводить исследование рельефа поверхности. Электронный микроскоп практически единственный прибор, который может дать изображение поверхности современной микросхемы или промежуточной стадии фотолитографического процесса.