Феноменология цветовосприятия

рис. 1a. Строение колбочки (сетчатка глаза).
1 — мембранные полудиски;
2 — митохондрия;
3 — ядро (эллипс с жировой каплей);
4 — синаптическая область;
5 — связующий отдел (перетяжка);
6 — наружный сегмент;
7 — внутренний сегмент;
8 — граница мембранной части;
9 — пигмент сократимых фибрилл.
рис. 2b. Строение палочки сетчатки глаза:
1 — наружный сегмент (содержит мембранные диски),
2 — связующий отдел (ресничка),
3 — внутренний отдел (содержит митохондрии),
4 — основание с нервными окончаниями,
5 — граница мембранной части,
6 — ядро,
7 — синаптическая область.
Рис.2а Жировые капельки и классификация фоторецепторов колбочек цыплёнка (обладающего, как и большинство птиц, четырёхкомпонентным цветовосприятием) (см. Цветное зрение у птиц)[1]

Феноменология цветовосприятия (греч., от phainomenon — феномен, и logos — слово, или наука о явлениях в природе) — когда различные феномены цветного зрения показывают, что зрительное восприятие света, цвета зависит не только от вида воздействующих источников света и цвета и работы фоторецепторов, но также от способа переработки световых сигналов в зрительной системе.

Различные участки видимого спектра света кажутся нам по-разному окрашенными, при этом отмечается непрерывное изменение ощущений восприятия цвета при переходе от фиолетового и синего через зелёный и жёлтый цвета к красному. Одновременно человек может воспринимать цвета, которые не спектральные (отсутствующие в спектре), например, пурпурный цвет, получаемый при смешении красного и синего цветов. Различные физические способы цветового воздействия зрительной системы могут приводить к идентичному восприятию цвета. Например, монохроматический жёлтый цвет не отличается от соответствующей смеси монохроматических зелёного и красного цветов. Или при воздействии на зрительную систему нужным набором цветов RGB («белого» цвета, например, солнечного) на диске, то при его вращении мы увидим диск белого цвета, и выполнив тоже самое, но c набором XYZ (версия Миг) — мы увидим чёрный цвет (точнее тёмно-коричневый) (см. рис.3).

Феноменологию цветовосприятия описывают законы цветного зрения, выведенные по результатам психофизических экспериментов. На основе этих законов за период более 200 лет было разработано несколько теорий цветного зрения. Однако, приблизительно в последние 35 лет появилась возможность непосредственно проверить эти теории методами электрофизиологии путем регистрации биоэлектрической активности одиночных фоторецепторов зрительной системы, а также расширить область взаимодействия и количество фоторецепторов сетчатки и мозга в цветовосприятии. Например, в 2007 году признано открытие 1991 года экстерорецепторов ipRGC (не колбочки и не палочки, расположенных в ганглиозном слое на пути световых лучей оптического изображения в сетчатке глаза).

Фиг.R, Рентгеноскопия среза сетчатки глаза примата.[2]

.

В связи с проведенными ранее исследованиями сетчатки при помощи рентгеноскопии (у приматов) [3] и проводимые в настоящее время исследования живых клеток и в том числе клеток сетчатки (колбочек, палочек и ipRGC) на базе нового микроскопа — Флуоресцентного микроскопа с разрешающей способностью 1-10 нм, на атомно-молекулярном уровне, появилась возможность получать новые данные исследований в цвете (это важно для оценки восприятия цвета экстерорецепторами, чувствительными к определённой длине волны спектральных зон S,M,L) с данными стереоизображений на мониторе в заданном масштабе, а также новых методов измерения цвета (см. Измерение цвета) (см. рис. 4а). Так уже проведены работы при исследовании цветного зрения у птиц на живых клетках сечений сетчаток (см. Цветное зрение у птиц (версия Миг)) в 2006—2008 годах [4]. Открытие третьего типа экстерорецепторов ipRGC в сетчатке дало возможность более глубже взглянуть в тайны работы зрительной системы, уточнить детали процесса восприятия света и цвета. Также удалось связать работу экстерорецепторов сетчатки (палочек, колбочек, ipRGC), расположенных в разных слоях, функционирующих в биологической среде дифференцировано и в единой системе с участием коры головного мозга (осознанно).

В данной биологической системе функционирует прямая и обратная связь между экстрорецепторами и мозгом, при которой образование оптического изображения происходит через несколько этапов: создание, получения «первичного» оптического изображения в сетчатке (на фоторецепторном уровне — палочек, колбочек) с передачей сигналов от изображения предметных точек в головной мозг. Нейронные сети, в режиме принципа «оппонентности» (см. Теория оппонентного цветного зрения (версия Миг)) формируют уже в нашем сознании оптический образ — «изображение» (в зрительных отделах головного мозга). При этом оптические изображения формируются перекрёстно в правом и левом полушарии головного мозга соответственно от левого и правого глаза в стерео, т.е. бинокулярном зрении. И в основе трёхкомпонентного принципа RGB (трихроматизм) заложено:

  • 1) Создание чёрно-белых оптических изображений в сетчатке «контурно» — (рецепторный уровень),
  • 2) Создания цветных оптических изображений в мозгу — (нейронный уровень).

Процесс возникновения ощущения цветаПравить

  Основная статья: Цвет (версия Миг)

Цвет — зрительное, субъективное восприятие человеком видимого света, различий в его спектр (версия Миг)альном составе, ощущаемых глазом. Светом обычно называют «видимый» диапазон электромагнитного излучения (см. видимое излучение), в диапазоне длин волн приблизительно 380—760 нм).

 
Человек широко использует цвет в своей деятельности. Понимание психологии восприятия цвета помогает более точно использовать цвет, как инструмент визуализации.

Процесс возникновения ощущения цвета можно кратко представить следующим образом. Согласно традиционному подходу, свет (версия Миг) представляет собой сложный набор предпосылок для восприятия цветных лучей. Пока свет от источника или отражающей поверхности не достиг рецепторов цветного зрения сетчатки (колбочки), считается, что цвета нет. Колбочки избирательно чувствительны к синей, зелёной и жёлто-красной частям спектра. Кроме этого существует палочковая система фоторецепторов, реагирующая на слабую освещенность и обеспечивающая сумеречное и ночное зрение.

Возникновение цветовых ощущений как механизм цветоразличения хорошо описывается в известной трёхком­понентной теории Юнга-Гельмгольца. Последняя объясняет необходимость и достаточность классической триады основных цветов RGB (красного, зелёного и синего) для получения цветов видимого спектра путём аддитивного смешения (Педхем, Сондерс, 1978). Например, на этом основана технология получения цвета в кинескопе. Трёхкомпонентная теория оказалась полезной и в качестве основы для различных процессов воспроизведения цвета и была развита с помощью законов Гроссмана в метод колориметрии МКО (CIE — в английской транскрипции). От первичных детекторов (рецепторный уровень) сетчатки возбуждение передаётся далее на группу градуальных нейронов, составляющих второй детекторный уровень (нейронный уровень — мозг)(Соколов, Измайлов Ч. А., 1984; Измайлов, Соколов, Черноризов, 1989). В настоящее время считается, что существует три вида детекторов этого уровня: красно-зелёный, сине-жёлтый и чёрно-белый (яркостной) (Педхем, Сондерс, 1978), хотя существует обоснованное мнение, что их должно быть не менее четырех (Соколов, Измайлов Ч. А., 1984; Измайлов, Соколов, Черноризов, 1989). Это связано с выявлением в структуре процесса цветоразличения не только в виде оппонентного отбора цвета яркого сигнала — анализ по яркости, но и так называемого униполярного темнового механизма, то есть анализатора белизны, что соответствует ощущению насыщенности цветового тона. Как бы то ни было, на этом уровне характер обработки цветового раздражения хорошо укладывается в теорию оппонентности Эвальда Геринга. Эта теория основывается на существовании уже не трёх, а четырёх основных цветов: красного, зелёного, жёлтого и синего, остающихся неизменными по цветовому тону при различных стимульных условиях и субъективно выделяемых большинством людей в качестве главных элементов цветовой гаммы. На основании первой части теории Геринга была разработана современная Натуральная цветовая система (NCS) (Тонквист, 1993)[5]

Дальнейшая обработка информации в цветовом анализаторе предполагает процесс сличения раздражителя с узкопо­лосным эталоном (см. обзор: Демидов, 1987), позволяющий идентифицировать мелкие цветовые поля на фоне крупных. Су­ществует также гипотеза о дублировании всего множества селективных детекторов цвета нейронами образной памяти (Соколов, Вартанов, 1987). Пройдя весь сложный путь от глаза до зон цветового анализатора в коре, трансдукцированные сигналы, воспринятые рецепторами глаза, превращаются в то, что мы воспринимаем и называем как Цвет (версия Миг). Этот путь в настоящее время может быть представлен как последовательная сортировка количественных данных (частот спектра) на некие всё более дробные качества в форме специфических реакций полей детекторов или ансамблей нейронов. Таким образом, данные классических и современных исследований позволяют мыслить Цвет не только в форме электромагнитных колебаний, но и в терминах спайковой (то есть в конечном итоге тоже электромагнитной) активности строго определенных нейронных структур мозга. До сего дня не решена проблема преодоления границы между физическими закономерностями, организующими работу физического аппарата восприятия, и возникновением психического феномена: ««Ни теория Юнга-Гельмгольца, Теория Э.Геринга не могут полностью объяснить, как сигналы преобразуются в мысленный образ объекта» (Тонквист, 1983)».[6]

Данный подход глубоко и безнадёжно ущербеный, так как он погряз в так называемой психофизиологической проблеме. Суть которой в том, что при данном способе рассуждений как раз имеет место непроходимая стена между ощущением и образом. За психо-физиологической проблемой стоит проблема психо-физическая. Психо-физическая проблема — камень преткновения всех концепций, изолированно изучающих душу и тело, человека и мир. Это — тупик из тупиков любого негумманистического подхода к Человеку и Природе.[7]

ВыводыПравить

Тем не менее, с точки зрения материалистической в настоящее время на первый план выходит недавнее продвижение понимания трёх аспектов видения цвета — trichromacy, которая принята на базе данных исследований у приматов (2002 г):

Колбочки воспринимают свет и выделяют основные лучи света (цвета) RGB с разными длинами волн c фронтом поперечного сечения от 8 до 1,5мкм, то под эти лучи размеры в трёх сечениях конуса мембраны имеют приблизительно такие же размеры (см. рис.1). Так как при цветном зрении участвуют только колбочки, то они воспринимают и оппонентно выделяют нормализованные лучи спектра S,M.,L (красные, зелёные, синие). Палочки, работая при сумеречном и ночном освещении, воспринимают более сильные синие и ультрафиолетовые лучи, которые в поперечном сечении фронта волны имеют размер 1,5‒2мкм, что равно приблизительно поперечному сечению цилиндра мембраны палочек (см. рис.2) При этом само ядро палочки имеет слабовыраженную нефтяную капельку, которая участвует в оппонентном отборе базовых лучей Основные цвета (версия Миг)RGB, участвует в цветном зрении (см. рис.1a, 2b). Т.е палочки в цветном зрении не участвуют (работают практически в чёрно-белом зрении с элементами сине-голубого оттенка). (См. Мембраны колбочек и палочек сетчатки глаза и их функция).

См. такжеПравить

ПримечанияПравить

  1. http://www.biology.yale.edu/facultystaff/goldsmithTH.html
  2. Robert E. Marc. FNAR/ "FNAR" (PDF). Retrieved Лаборатория доктора Марка,2009.  Check date values in: |accessdate= (help)
  3. http://prometheus.med.utah.edu/~marclab/Marc_Duanes_FNAR_20080815_layout.pdf
  4. Goldsmith, Timothy H. (July 2006). «What birds see» (PDF). Scientific American: 69‒75. http://www.csulb.edu/labs/bcl/elab/avian%20vision_intro.pdf
  5. Human Physiology and Mechanisms of Disease.о книге
  6. Психология и психосемантика цвета
  7. "Цветовое зрение". 14 августа, 2009. Retrieved 26 Июля, 2010.  Check date values in: |date=, |accessdate= (help)
  8. Michael H. Rowe. "Trichromatic Color Vision in Primates". Physiology Online. Retrieved 8 сентября, 2012‎.  Check date values in: |accessdate= (help)