Гравитационные волны на воде

Гравитацио́нные во́лны на воде́ — разновидность волн на воде, при которых сила, возвращающая деформированную поверхность воды к состоянию равновесия, есть просто сила тяжести, т.е. перепад высот гребня и впадины в гравитационном поле.

Общие свойстваПравить

Гравитационные волны на воде — это нелинейные волны. Точный математический анализ возможен лишь в линеаризованном приближении и в отсутствие турбулентности. Кроме того, обычно речь идёт про волны на поверхности идеальной жидкости. Результаты точного решения в этом случае описаны ниже.

Гравитационные волны на воде не поперечны и не продольны. При колебании частицы жидкости описывают некоторые кривые, т.е. перемещаются как в направлении движения, так и поперёк него. В линеаризованном приближении эти траектории имеют вид окружностей. Это приводит к тому, что профиль волн не синусоидальный, а имеет характерные заострённые гребни и более пологие провалы.

Нелинейные эффекты сказываются, когда амплитуда волны становится сравнимой с её длиной. Одним из характерных эффектов в этом режиме является появление изломов на вершинах волн. Кроме того, появляется возможность опрокидывания волны. Эти эффекты пока не поддаются точному аналитическому расчёту.

Закон дисперсии для слабых волнПравить

Поведение волн малой амплитуды можно с хорошей точностью описать линеаризованными уравнениями движения жидкости. Для справедливости этого приближения необходимо, чтобы амплитуда волны была существенно меньше как длины волны, так и глубины водоёма.

Имеется две предельные ситуации, для которых решение задачи имеет наиболее простой вид — это гравитационные волны на мелкой воде и на глубокой воде.

Гравитационные волны на мелкой водеПравить

Приближение волн на мелкой воде справедливо в тех случаях, когда длина волны существенно превышает глубину водоёма. Классический пример таких волн — это цунами в океане: до тех пор, пока цунами не вышла на берег, она представляет собой волну амплитудой порядка нескольких метров и длиной в десятки и сотни километров, что, конечно же, существенно больше глубины океана.

Закон дисперсии и скорости волны в этом случае имеет вид:

\( \omega = \sqrt{gH}\cdot k\,;\quad v_{ph} = v_{gr} = \sqrt{gH}. \)

Этот закон дисперсии приводит к некоторым явлениям, которые можно легко заметить на морском берегу.

  • Даже если волна в открытом море шла под углом к берегу, то при выходе на берег гребни волны имеют тенденцию разворачиваться параллельно берегу. Это связано с тем, что вблизи берега, когда глубина начинает постепенно уменьшаться, скорость волны падает. Поэтому косая волна притормаживает на подходе к берегу, разворачиваясь при этом.
  • За счёт аналогичного механизма при подходе к берегу сжимается продольный размер цунами, катастрофически вырастая при этом в амплитуде.

Гравитационные волны на глубокой водеПравить

Приближение волны на глубокой воде справедливо, когда глубина водоёма значительно превышает длину волны. В этом случае для простоты рассматривают бесконечно глубокий водоём. Это обоснованно, поскольку при колебаниях поверхности реально движется не вся толща воды, а лишь приповерхностный слой глубиной порядка длины волны.

Закон дисперсии и скорости волны в этом случае имеет вид:

\( \omega = \sqrt{gk}\,;\quad v_{ph} = 2 v_{gr} = \sqrt{{g\over k}}. \)

Из выписанного закона следует, что длинноволновые колебания будут распространяться по воде быстрее коротковолновых, что приводит к ряду интересных явлений. Например, бросив камень в воду и глядя на круги, образуемые им, можно заметить, что граница волн расширяется не равномерно, а примерно равноускоренно. При этом чем больше граница, чем более длинноволновыми колебаниями она формируется. Другим красивым следствием выписанного закона дисперсии являются корабельные волны.

Гравитационные волны в общем случаеПравить

Если длина волны сравнима с глубиной бассейна H, то закон дисперсии в этом случае имеет вид:

\( \omega = \sqrt{gk\cdot th(kH)}\,. \)

Некоторые проблемы теории гравитационных волн на водеПравить

  • До сих пор не понят механизм формирования и устойчивости так называемых блуждающих волн.

СсылкиПравить