Группа вращений
В механике и геометрии группа вращения является набором всех вращений вокруг начала координат в 3-мерном Евклидовом пространстве,
СвойстваПравить
- Группа вращений некоммутативна.
- Группа вращений является группой Ли.
- Группа SO(3) диффеоморфна проективному пространству размерности 3. По теореме вращения Эйлера, любое вращение можно задать прямой (осью вращения, заданной единичным вектором
), проходящей через центр координат, и углом . Можно было бы сопоставить каждому вращению вектор и тем самым отождествить элементы группы вращения с точками шара радиуса . Однако, такое сопоставление не было бы биективным, так как углам и соответствует одно и то же вращение. Поэтому, отождествив диаметрально противоположные точки на границе шара, получим проективное пространство. - Универсальная накрывающая группы SO(3) является специальной унитарной группой SU(2), или, что то же самое, группой единичных по модулю кватернионов (действующих на касательном пространстве к единичной сфере сопряжениями). При этом накрытие двулистно.
ЛитератураПравить
- Винберг Э.Б. Курс алгебры. — 3-е изд.. — М.: Факториал Пресс, 2002. — 544 с. — 3000 экз. — ISBN 5-88688-060-7.
См. такжеПравить
Текущая версия статьи по алгебре. Помогите Традиции, исправьте и дополните её. |