Начальные и граничные условия

Начальные и граничные условия (что в теории дифференциальных уравнений — дополнение к основному дифференциальному уравнению (обыкновенному или в частных производных), задающее его поведение в начальный момент времени или на границе рассматриваемой области соответственно.

Обычно дифференциальное уравнение имеет не одно решение, а целое их семейство. Начальные и граничные условия позволяют выбрать из него одно, соответствующее реальному физическому процессу или явлению. В теории обыкновенных дифференциальных уравнений доказана теорема существования и единственности решения задачи с начальным условием (т. н. задачи Коши). Для уравнений в частных производных получены некоторые теоремы существования и единственности решений для определенных классов начальных и краевых задач.

ТерминологияПравить

Иногда к граничным относят и начальные условия в нестационарных задачах, таких как решение гиперболических или параболических уравнений.

Для стационарных задач существует разделение граничных условий на главные и естественные.

Главные условия обычно имеют вид u ( Ω ) = g u(\partial \Omega) = g , где Ω \partial \Omega — граница области Ω \Omega .

Естественные условия содержат также и производную решения по нормали к границе.

ПримерПравить

Уравнение d 2 y d t 2 = g \frac{d^2 y}{dt^2}=-g описывает движение тела в поле земного тяготения. Ему удовлетворяет любая квадратичная функция вида y ( t ) = g t 2 / 2 + a t + b y(t)=-gt^2/2+at+b , где a , b a, b — произвольные числа. Для выделения конкретного закона движения необходимо указать начальную координату тела и его скорость, то есть начальные условия.

Корректность постановки граничных условийПравить

Задачи математической физики описывают реальные физические процессы, а потому их постановка должна удовлетворять следующим естественным требованиям:

  1. Решение должно существовать в каком-либо классе функций;
  2. Решение должно быть единственным в каком-либо классе функций;
  3. Решение должно непрерывно зависеть от данных (начальных и граничных условий, свободного члена, коэффициентов и т.д.).

Требование непрерывной зависимости решения обусловливается тем обстоятельством, что физические данные, как правило, определяются из эксперимента приближенно, и поэтому нужно быть уверенным в том, что решение задачи в рамках выбранной математической модели не будет существенно зависеть от погрешности измерений. Математически это требование можно записать, например, так (для независимости от свободного члена):

Пусть задано два дифференциальных уравнения: L u = F 1 ,   L u = F 2 Lu=F_1,~Lu=F_2 с одинаковыми дифференциальными операторами и одинаковыми граничными условиями, тогда их решения будут непрерывно зависеть от свободного члена, если:
δ > 0   ε > 0 :   F 1 F 2 \forall \delta>0~\exist\varepsilon>0:~\|F_1-F_2\| решения соответствующих уравнений.

Множество функций, для которых выполняются перечисленные требования, называется классом корректности. Некорректную постановку граничных условий хорошо иллюстрирует пример Адамара.

См. такжеПравить

ЛитератураПравить

Владимиров В.С., Жаринов В.В. Уравнения математической физики. — Физматлит, 2004. — ISBN 5-9221-0310-X.

  • А.М. Ахтямов Теория идентификации краевых условий и ее приложения. - М. : Физматлит, 2009.
  • А.М. Ахтямов, В.А. Садовничий, Султанаев Я.Т. Обратные задачи Штурма-Лиувилля с нераспадающимися краевыми условиями. - М.: Изд-во Московского университета, 2009.