Вещество

МезонМезонБарионНуклонКваркЛептонЭлектронАдронАтомМолекулаФотонW- и Z-бозоныГлюонГравитонЭлектромагнитное взаимодействиеСлабое взаимодействиеСильное взаимодействиеГравитацияКвантовая электродинамикаКвантовая хромодинамикаКвантовая гравитацияЭлектрослабое взаимодействиеТеория великого объединенияТеория всегоЭлементарные частицы (физика)Материя (физика)Бозон Хиггса
Краткий обзор различных семейств элементарных частиц и составных частиц, и теории, описывающие их взаимодействия. Фермионы — слева, бозоны — справа. (пункты на картинке кликабельны)

Вещество́ — морфология чего-либо. То, из чего состоит вещь. Вещество доступно опознанию с помощью органов чувств.

Вещество́ в физике — это форма материи, противопоставляемая полю, обладающая массой покоя. Вещество в современной физике, как правило, понимается как вид материи, состоящий из фермионов или содержащий фермионы наряду с бозонами; обладает массой покоя, в отличие от некоторых типов полей, как например электромагнитное[1]. Обычно (при сравнительно низких температурах и плотностях) вещество состоит из частиц, в том числе и наночастиц, среди которых чаще всего встречаются электроны, протоны и нейтроны. Последние два образуют атомные ядра, а все вместе — атомы (атомное вещество), из которых — молекулы, кристаллы и т. д. В некоторых условиях, как например в нейтронных звездах, могут существовать достаточно необычные виды вещества.

Вещество в биологии — материя, образующая ткани организмов, входящая в состав органелл клеток.

Различие между веществом и полемПравить

Поле, в отличие от веществ, характеризуется непрерывностью, известны электромагнитное и гравитационное поля, поле ядерных сил, волновые поля различных элементарных частиц. Современное естествознание нивелирует различие между веществом и полем, считая, что и вещества, и поля состоят из различных частиц, обладающих корпускулярно-волновой (двойственной) природой. Выявление тесной взаимосвязи между полем и веществом привело к углублению представлений о единстве всех форм и структуры материального мира. Однородное вещество характеризуется плотностью – отношением массы вещества к его объёму: ρ = m V \rho = \frac{m}{V} где ρ — плотность вещества, m — масса вещества, V — объём вещества. Физические поля такой плотностью не обладают.

Свойства веществаПравить

Каждому веществу присущ набор специфических свойств – объективных характеристик, которые определяют индивидуальность конкретного вещества и тем самым позволяют отличить его от всех других веществ. К наиболее характерным физико-химическим свойствам относятся константы – плотность, температура плавления, температура кипения, термодинамические характеристики, параметры кристаллической структуры. К основным характеристикам вещества принадлежат его химические свойства.

Вещество в химииПравить

Разнообразие веществПравить

Число веществ в принципе неограниченно велико; к известному числу веществ все время добавляются новые вещества, как открываемые в природе, так и синтезируемые искусственно.

Индивидуальные вещества и смесиПравить

В химии принято разделять все объекты изучения на индивидуальные вещества (иначе — соединения) и их смеси. Под индивидуальным веществом понимают абстрактное понятие, обозначающее набор атомов, связанных друг с другом по определённому закону. Граница между индивидуальным веществом и смесью веществ довольно расплывчата, так как существуют вещества непостоянного состава, для которых, вообще говоря, нельзя предложить точной формулы. Кроме того, индивидуальное вещество остаётся абстракцией в силу того, что практически достижима лишь конечная чистота вещества. Это значит, что любой конкретный, реально существующий образец представляет собой смесь веществ, пусть и с подавляющим преобладанием одного из них. Несмотря на кажущуюся надуманность этого ограничения, зачастую чистота вещества играет ключевую роль в его свойствах. Так, знаменитая прочность титана проявляется только после того, как он очищен от кислорода до определённого предела (менее сотых долей процента).

Агрегатные состоянияПравить

Основная статья: Агрегатные состояния

Все химические вещества в принципе могут существовать в трех агрегатных состояниях – твердом, жидком и газообразном. Так, лед, жидкая вода и водяной пар – это твердое, жидкое и газообразное состояния одного и того же химического вещества – воды H2O. Твердая, жидкая и газообразная формы не являются индивидуальными характеристиками веществ, а соответствуют лишь различным, зависящим от внешних физических условий состояниям существования химических веществ. Поэтому нельзя приписывать воде только признак жидкости, кислороду – признак газа, а хлориду натрия – признак твердого состояния. Каждое из этих (и всех других веществ) при изменении условий может перейти в любое другое из трех агрегатных состояний. При переходе от идеальных моделей твердого, жидкого и газообразного состояний к реальным состояниям вещества обнаруживается несколько пограничных промежуточных типов, общеизвестными из которых являются аморфное (стеклообразное) состояние, состояние жидкого кристалла и высокоэластичное (полимерное) состояние. В связи с этим часто пользуются более широким понятием «фаза». В физике рассматривается четвёртое агрегатное состояние вещества – плазма, частично или полностью ионизированное состояние, в котором плотность положительных и отрицательных зарядов одинакова (плазма электронейтральна).

КристаллыПравить

Основная статья: Кристаллы

Это твердые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, т. е. на одном из нескольких определенных регулярных расположений составляющих вещество частиц (атомов, молекул, ионов). Кристаллическая структура, будучи индивидуальной для каждого вещества, относится к основным физико-химическим свойствам. Составляющие данное твердое вещество частицы образуют кристаллическую решетку. Если кристаллические решетки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решетки. Сами расстояния между частицами называются параметрами решетки. Параметры решетки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например методами рентгеновского структурного анализа. Часто твердые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решетки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны ромбическая и моноклинная сера, графит и алмаз, которые являются гексагональной и кубической модификациями углерода, среди сложных веществ – кварц, тридимит и кристобалит представляют собой различные модификации диоксида кремния.

Неорганические веществаПравить

Органические веществаПравить

ЛитератураПравить

  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989

См. такжеПравить

ПримечанияПравить

  1. Это различие было в прошлом одним из признаков классификации физических объектов на вещество и «поля», однако на настоящий момент такая классификация устарела: в основе вещества также лежат квантованные поля, а разделение фундаментальных полей на основные классы (сопоставимые со старым делением на вещество и поле) происходит в основном по признаку спина; хотя можно признать, что на некотором глубинном уровне все бозонные фундаментальные поля безмассовы, однако в итоге некоторые из них (например, поле-переносчик слабого взаимодействия) всё же приобретают массу, а механизм же приобретения массы фермионными полями недостаточно ясен, что мешает сделать массивность или безмассовость основой какой-то содержательной классификации, особенно учитывая что вопрос о наличии массы у нейтрино был долгое время открыт и решен лишь экспериментально.

В этой статье или секции нет ссылок на источники информации.
Вы можете помочь улучшить эту статью, добавив список литературы или внешние ссылки.