Зеркально-линзовые оптические системы
Зеркально-линзовые оптические системы, или катадиоптрические системы — это разновидность
оптических систем, содержащих в качестве оптических элементов как
зеркала (катоптрику), так и линзы.
Зеркально-линзовые системы нашли применение в прожекторах, ru:фарах, ранних маяках, микроскопах и телескопах,
а также в телеобъективах и сверхсветосильных объективах.
Основное развитие катадиоптрические системы получили в телескопах, поскольку позволяют использовать сферическую поверхность зеркал, значительно более технологичную, чем другие кривые поверхности. Это даёт возможность создавать сравнительно дешёвые телескопы больших диаметров. Коррекционные линзы сравнительно небольшого диаметра могут использоваться в телескопах-рефлекторах для увеличения полезного поля зрения, но к зеркально-линзовым телескопам их не относят. Зеркально-линзовыми принято называть такие телескопы, в которых линзовые элементы сравнимы по размеру с главным зеркалом и предназначены для коррекции изображения (оно строится главным зеркалом).
Основные оптические системы катадиоптрических телескоповПравить
Согласно законам оптики, шероховатость поверхности зеркала должна быть не хуже λ/8, где λ — длина волны (ru:видимый свет — 550 нм), а отклонение формы поверхности от расчётной должно лежать в пределах от 0,02 мкм до 1 мкм[1]. Таким образом, основная сложность изготовления зеркала состоит в необходимости очень точно соблюдать кривизну поверхности. Изготовить сферическое зеркало технологически гораздо проще, чем асферические элиптическое, параболическое, гиперболическое, сплюснутого сфероида, которые используются в телескопах-рефлекторах. Но сферическое зеркало само по себе обладает очень большими сферическими аберрациями и непригодно для использования. Описанные ниже системы телескопов — это попытки исправить аберрации сферического зеркала добавлением в оптическую систему стеклянной линзы (или системы линз) особой кривизны (корректора).
Первые системы катадиоптрических телескоповПравить
К первым типам катадиоптрических телескопов можно отнести системы, состоящие из однолинзового объектива и зеркала Манжена. Первый телескоп такого типа был запатентован W. F. Hamilton в 1814. В конце 19-го века немецкий оптик Людвиг Шупманн (Ludwig Schupmann) расположил катадиоптрическое зеркало за фокусом линзового объектива и добавил в систему третий элемент — линзовый корректор. Данные телескопы, однако, не получили распространения, будучи оттеснены ахроматическими рефракторами и рефлекторами. Любопытно отметить, что в конце 20-го века некоторые оптики снова проявили интерес к данным схемам: так, в 1999 г. британский любитель астрономии и телескопостроения Джон Уолл запатентовал оптическую схему телескопа «Zerochromat».[2]
Система ШмидтаПравить
Камера ШмидтаПравить
- Не следует путать с системой Шмидта — Ньютона.
В 1930 эстонско-шведский оптик, сотрудник Гамбургской обсерватории Бернхард Шмидт установил в центре кривизны сферического зеркала диафрагму, сразу устранив и кому и астигматизм. (эта модификация носит наименование «безлинзовый Шмидт») Для устранения сферической аберрации он разместил в диафрагме линзу специальной формы, которая представляет собой поверхность 4-го порядка.
|
(Имеется ввиду камеры с одинаковой апертурой.) Камеры Шмидта обладают незначительным хроматизмом, как правило, не имеющего практического значения. Существуют экземпляры с двойной - ахроматической коррекционной пластиной. Камера Шмидта очень активно используется в астрометрии для создания обзоров неба. Основное его преимущество — очень большое поле зрения, до 6°. Фокальная поверхность является сферой, поэтому астрометристы обычно не исправляют кривизну поля, а вместо этого используют выгнутые фотопластинки.
Камера Шмидта-Вя́йсяляПравить
И́рьё Вя́йсяля, оптик Финляндского княжества Российской империи, независимо от Шмидта изобрёл схожую схему, но не стал её публиковать, оставив заметку в записях лекций 1924 года "проблематичная сферическая фокальная поверхность". Когда же Вяйсяля увидал публикацию Шмидта, он придумал решение для исправления кривизны поверхности изображения разместить возле фокуса двояковыпуклую линзу. Эта схема и стала именоваться Камера Шмидта-Вя́йсяля, или иногда просто Камера Вя́йсяля. Дальнейшее развитие Камера Шмидта-Вя́йсяля получила в схеме RASA. Однако в ней отказались от размещения апертурного корректора в центре кривизны главного зеркала на манер телескопа Шмидта-Кассегрена, и её длина сократилась более чем на 50%.
Камера RASAПравить
Rowe Ackermann Schmidt Astrograph - Астрограф, выполненный по схеме схожей с камерой Шмидта, с использованием асферического планоидного корректора Шмидта, в модификации Рове и Аккерманна. По сути является развитием схемы камеры Шмидта-Вя́йсяля с усложненным предфокальным 4-ёх линзовым корректором, (вместо одиночной двояковыпуклой линзы) но с уменьшенной длиной - примерно как у телескопа Шмидта-Кассегрена. Полноапертурный корректор расположен на расстоянии немного меньше фокусного.
Фирмой «Celestron» выпущенна камера «RASA» 280 мм (11") F/2,2 с классическим полноапертурным корректором Шмидта, и четырёхлинзовым близфокальным корректором кривизны изображения.
На камеру RASA возможна установка обычных зеркальных фотоаппаратов - в несколько необычном положении: спереди телескопа, возле стекла корректора по его центру. Таким образом часть апертуры экранируется корпусом фотоаппарата.
Камера RASA обладает высоким качеством изображения, и необычно высокой светосилой для доступных любительских телескопов-астрографов, а также очень широким полем зрения - 70 мм.
Телескоп Шмидта-КассегренаПравить
В 1946 Джеймс Бэйкер установил в телескопе Кассегрена, со сферическим главным зеркалом, коррекционную пластинку как в камере Шмидта. Подобрав параметры выпуклого вторичного зеркала - получил плоское поле. Ввиду того что положение коррекционной пластинки определяется вторичным зеркалом, которое к нему крепится, система потеряла свои главные достоинства - широкоугольность при высоком качестве изображения, но приобрела другие: компактность, по сравнению с камерой Шмидта, ставшую равной обычному Кассегрену, отсутствие дифракционных лучей от растяжек крепления вторичного зеркала и закрытая конструкция трубы, технологичность (отсутствие параболического зеркала, в то время как асферичность коррекционной пластинки достигается при обычной полировке без затратной фигуризации, за счёт вакуумной деформации пластины). Телескопы такой схемы очень распространены, и именуются как Шмидта — Кассегрена.
При сохранении первоначального положения коррекционной пластинки, как у камеры Шмидта - высокое качество на широком поле сохраняется, но портится дифракционная картина, ввиду необходимости вводить крепление вторичного зеркала, которое реализуется на обычных пауках-растяжках, а также остаются большая длина и вес телескопа.
Менисковый Шмидт МаксутоваПравить
Известный советский оптик Д.Д. Максутов, широко известный своей менисковой системой, предложил также очень важную оптическую схему, незаслуженно не пользующуюся популярностью - менисковую разновидность камеры Шмидта. (Также независимо эту схему предложил голландский оптик Альберт Бауэрс.) Схема состоит только из сферических поверхностей, и имеет более широкое неискажённое поле, чем у оригинальной схемы Шмидта с асферической пластиной-корректором! При относительной простоте она более доступна, как для промышленного освоения, так и для самостоятельного изготовления любителями, чем камера Шмидта с асферическим корректором. Но при этом обладает лучшим качеством и большей светосилой чем "безлинзовый Шмидт". Из недостатков следует отметить хроматизм положения (при одиночном не ахроматизированном мениске), длину аналогичную таковой у камеры Шмидта, и не во всех случаях имеющуюся возможность полностью устранить сферическую аберрацию, что вплотную подводит к схемам "супершмидтов" - более сложным и совершенным.
Камера Бэйкер-НанаПравить
Джеймс Бейкер и Джозеф Нан вместо асферического корректора, в камере Шмидта, разместил ближе к фокусу трёхлинзовую систему. Полученная система получила название камера Бэйкер-Нана. По такой схеме были построены камеры 50 см F/0.75 для наблюдения за спутниками. Фотографирование происходило на широкоформатную 55 мм плёнку («Cinemascope 55»). Использовались Смитсоновской астрономической обсерваторией с конца 1950-ых до середины 1970-ых.
СупершмидтыПравить
Это наиболее совершенные зеркально-линзовые оптические системы - они имеют наибольшее поле зрения (до 65° градусов) при светосиле близкой к теоретическому пределу. В семейство супершмидтов входят следующие системы:
- Линфута-Хаукинса
- Бауэрса
- Волосова-Бабинцева («Антарес»)
- Максутова-Сосниной («Астродар»)
- Бэйкера
Схемы строятся на основе схемы «менискового Шмидта Максутова» с использованием дополнительного коррекционного элемента, который может быть в асферических вариантах: корректор Шмидта или двулинзовый асферический корректор (системы Линфута-Хаукинса и объектив «Астродар» Максутова-Сосниной (диаметр поля зрения 30°, светосила геометрическая 1/1,4, эффективная 1/1,8)), а также в виде конической линзы: системы Бауэрса и «Волосова-Бабинцева» (объектив «Антарес»). Супершмидт профессора Джеймса Гильберта Бэйкера имеет геометрическую светосилу 1/0,67 при угле поля зрения 55° и апертуре 300 мм (диаметр зеркала 585 мм, диаметр мениска 457 мм).
Система МаксутоваПравить
В 1941 Д. Д. Максутов нашёл, что сферическую аберрацию главного зеркала можно компенсировать мениском большой кривизны. Главное зеркало при этом в большинстве случаев сферическое, хотя, для получения улучшенных результатов, используются эллиптические главные зеркала, или ретушированные нужным образом под конкретную систему. Найдя удачное расстояние между мениском и зеркалом, Максутов сумел избавиться от комы и астигматизма. Кривизну поля, как и в камере Шмидта, можно устранить, установив вблизи фокальной плоскости плоско-выпуклую линзу — так называемую линзу Пиацци-Смита.
Проалюминировав центральную часть мениска, Максутов получил менисковые аналоги телескопов Кассегрена и Грегори. Были предложены менисковые аналоги практически всех интересных для астрономов телескопов. В частности, в современной любительской астрономии часто применяются телескопы Максутова — Кассегрена, в меньшей степени, Максутова — Ньютона. Другие схемы Максутова, например Максутова — Грегори, встречаются гораздо реже.
Следует отметить, что существует три основных типа менисковых телескопов Максутова — Кассегрена, различие между которыми состоит в типе вторичного зеркала.
В одном случае вторичное зеркало, как было указано выше, является алюминированным кружком на внутренней поверхности мениска. Это упрощает и удешевляет конструкцию. Однако, так как радиусы кривизны внешней и внутренней поверхности мениска одинаковы, для устранения сферической аберрации до приемлемых величин приходится увеличивать фокальное отношение системы. Поэтому абсолютное большинство коммерчески выпускающихся небольших телескопов любительского класса являются длиннофокусными и имеют фокальное отношение порядка 1/12-1/15.
Телескопы этого типа в англоязычных источниках обозначаются как Gregory-Maksutov или Spot-Maksutov, поскольку патент в США на такую схему (и тип вторичного зеркала) был выдан американскому оптику и инженеру Джону Грегори (John F. Gregory, 1927—2009). Первым коммерческим любительским телескопом такого типа был Questar, выпущенный в 1954 г.
Для создания более светосильных систем и телескопов высокого класса применяют отдельное вторичное зеркало, крепящееся к мениску, или, как это делалось в советских объективах «МТО» и «ЗМ», нашлифовывалось прямо на мениске, таким образом образуя с ним одну деталь. Наличие отдельного зеркала позволяет придать ему необходимую геометрическую форму, не изменяя при этом конструкцию мениска. В англоязычных источниках данный вариант телескопа Максутова обозначается как Maksutov-Sigler.
Существует ещё одна менисковая схема Максутова с корректором в сходящемся пучке, в которой мениск имеет размер не во всю апертуру (полноапертурный), а равен размеру вторичного зеркала и размещён в непосредственной близости от него. Лучи дважды проходят через этот мениск - до отражения от вторичного зеркала и после него. Дальнейшее развитие эта схема получила в схемах Аргунова и Клевцова.
По сравнению с распространёнными системами Шмидта-Кассегрена (не путать с камерами Шмидта - с удлинёнными трубами, (длина трубы примерно в 3 раза больше) в которых корректор размещен на двойном фокусном расстоянии от зеркала), система Максутова-Кассегрена имеет остаточную сферическую абберацию, (в хорошо сделанных системах Шмидта сферической аберрации нет вообще) поэтому, для достижения отличного качества изображения системы Максутова-Кассегрена делаются с относительным отверстием на, порядка, 30%-50% большим чем Шмидта-Кассегрена. Во всем остальном система Максутова-Кассегрена превосходит систему Шмидта-Кассегрена: у неё меньше кривизна поверхности изображения, меньше кома, благодаря чему больше неискажённое поле зрения. Незначительный хроматизм положения системы Шмидта-Кассегрена у системы Максутова-Кассегрена отсутствует.
Система Волосова-Гальперна-Печатниковой (Слефогта-Рихтера)Править
Система с полноапертурным линзовым корректором, в качестве которого выступают две линзы. Эта система реализована в советских, а теперь российских объективах «Рубинар».
Система ГамильтонаПравить
С конца 1970-х - одна из самых популярных оптических схем катадиоптрических фотообъективов. Состоит из одиночной положительной линзы, и расположенного на значительном расстоянии от него главного зеркала Манжена. Такая конструкция позволяет сильно удешевить конструкцию, при вполне приемлемом качестве изображения.
Система КлевцоваПравить
Система на основе схемы Кассегрена, с изменённой конструкцией вторичного зеркала, совмещённой с линзовым корректором в сходящихся лучах. В его качестве выступает два стекляных элемента - менисковая линза и зеркало манжена. Таким образом, проходя через эту конструкцию дважды, свет минует одну зеркальную, и шесть поверхностей поверхностей стекло-воздух, что создаёт хорошие коррекционные возможности. В системе Клевцова достигнуто дифракционное качество, а вес и время температурной отстойки лучше чем у остальных катадиоптрических систем, в силу малого размера корректора. Эта система реализована в телескопах ТАЛ «Новосибирского приборостроительного завода».
Зеркально-линзовые телеобъективыПравить
Катадиоптрическая система нашла применение также при проектировании фотографических и киносъёмочных телеобъективов. Благодаря зеркально-линзовой конструкции существенно уменьшается длина оправы, поэтому объективы с фокусным расстоянием 1000 мм и более значительно компактнее и легче обычных длиннофокусных объективов[4]. В отдельных случаях, уменьшение количества линз позволяет снизить хроматические аберрации.
Зеркально-линзовые объективы, как правило, не оснащаются регулируемой диафрагмой и их фиксированное относительное отверстие лежит в диапазоне от f/5,6 до f/11. Поэтому снимать ими можно только при хорошем освещении или на фотоматериалы с высокой светочувствительностью. Некоторые специальные зеркально-линзовые объективы могут иметь и очень высокую светосилу (меньше f/1.0). Характерной особенностью изображений в зоне нерезкости, создаваемых зеркально-линзовым объективом, является форма кружка рассеяния от ярких источников света, отображаемых не в фокусе. Такие источники изображаются в виде колец, соответствующих форме входного зрачка объектива. В некоторых случаях такой вид размытия создаёт своеобразный выразительный оптический рисунок. Частотно-контрастная характеристика зеркально-линзовых объективов достаточно низка. Такой тип объективов приобрёл некоторую популярность в начале 1970-х годов из-за относительной компактности и дешевизны. Однако, низкая светосила и мягкий оптический рисунок заставили уступить место телеобъективам двухкомпонентных линзовых конструкций.
В отечественных фотокинообъективах использовалась, главным образом, система Максутова[5]. Примером могут послужить объективы серии «МТО» и «ЗМ».
Основные преимущества и недостатки катадиоптрических системПравить
Катадиоптрические системы — это синтез зеркальных и линзовых систем. Они имеют много преимуществ, но также получили в наследство и некоторые недостатки.
- Преимущества
- Главным преимуществом является простота изготовления сферического зеркала. Корректор избавляет систему от сферической аберрации, «трансформируя» её в аберрацию кривизны поля.
- В качестве вторичного зеркала иногда используется алюминированная центральная часть обратной стороны корректора. Вторичное зеркало — алюминированная часть корректора или отдельное — жёстко зафиксировано в оправе, в то время, как почти во всех рефлекторах вторичное зеркало держится на трёх-четырёх растяжках, что может приводить к разъюстировке и портит дифракционную картину. Катадиоптрическая система во многом свободна от этих недостатков.
- Труба телескопа закрыта, что предотвращает загрязнение внутренних оптических элементов и снижает образование воздушных потоков внутри телескопа.
- Трубы телескопов этого типа наиболее компактны по сравнению с другими типами телескопов (при равном диаметре и фокусном расстоянии).
- Недостатки
- Сложность изготовления корректора больших размеров. Диаметр самых больших инструментов не превышает 2-х метров.
- Большой фокус.
- Система содержит оптические элементы из стекла, поэтому на окраине поля зрения проявляется хроматическая аберрация и кома. Стекло корректора поглощает часть света, несколько уменьшая светопропускание инструмента.
- Проблема кривизны поля решалась использованием специального держателя, в котором плоская фотопластинка изгибалась до нужной кривизны. Изготовить же ПЗС-матрицу нужной кривизны сложно и дорого.
- Фокус жёстко связан с длиной трубы (расстояния от зеркала до корректора — половина фокуса). Относительное отверстие также ограничено остаточными аберрациями.
- Большое время термостабилизации оптики перед началом наблюдений.
Зеркально-линзовые системы создавались в поисках компромисса. Их применение ограничено. Малые размеры и фокус не позволяют применять их для астрофизических целей, но телескопы получили широкое распространение среди астрометристов.
См. такжеПравить
ПримечанияПравить
- ↑ Быков Б. З., Перов В. А. Оформление рабочих чертежей оптических деталей и выбор допусков на их характеристики. — 1-е изд. — М.: МГТУ им. Н. Э. Баумана, 2009.о книге
- ↑ «Zerochromat» Джона Уолла
- ↑ Сикорук Л. Л. Телескопы для любителей астрономии. — 2-е изд.. — М.: «Наука», 1982. — С. 49. — 368 с.о книге
- ↑ Общий курс фотографии, 1987, с. 15
- ↑ Кудряшов, 1952, с. 56
ЛитератураПравить
- Фомин А. В. § 5. Фотографические объективы // Общий курс фотографии. — 3-е. — М.,: «Легпромбытиздат», 1987. — С. 12—25. — 256 с.о книге
- Н. Кудряшов Узкоплёночный киноаппарат // «Как самому снять и показать кинофильм». — 1-е изд. — М.,: Госкиноиздат, 1952. — С. 56—57. — 252 с.о книге
СсылкиПравить
- Список катадиоптрических телескопов
- [ http://bse.sci-lib.com/article124254.html Шмидта телескоп] — статья из БСЭ
- Системы Клевцова
- Телескопы систем Гамильтона, Шупманна, Хондерса (англ.)
- Оптическая схема Шмидта-Кассегрена