Математика в Древней Греции
Умственное развитие, а вместе с ним и развитие науки никогда не шло во всём человечестве равномерно. В то время как одни народы стояли во главе умственного движения человечества, другие оказывались едва вышедшими из первобытного состояния. Когда у последних вместе с улучшением условий их жизни, появлялись, под действием внутренних или внешних импульсов, стремления к приобретению знаний, тогда они должны были прежде всего догонять передовые племена. Если в то же время передовые племена, достигнув высшей доступной им по их способностям или по созданным для них историей условиям жизни степени развития, вырождались и падали, в умственном развитии всего человечества происходил застой или даже видимый временный упадок: приобретение новых знаний прекращалось и умственная работа человечества сводилась единственно к упомянутому усвоению отставшими племенами знаний, уже приобретённых человечеством. Только по достижении этого усвоения отставшие племена получали возможность вести далее дело приобретения новых знаний и через это, в свою очередь, становиться во главе умственного движения человечества. Таким образом, в истории умственной деятельности каждого народа, когда-нибудь занимавшего место в ряду передовых деятелей человечества и затем свершившего весь свой жизненный цикл, исследователь должен различать три периода: период усвоения знаний, уже приобретённых человечеством; период самостоятельной деятельности в общей всему человечеству области приобретения новых знаний и, наконец, период упадка и умственного вырождения. Обращаясь от этого общего рассмотрения хода умственного развития человечества к той из отдельных его областей, которая представляется развитием М., мы находим, что при современном состоянии историко-математических знаний нам доступно изучение вполне завершённого цикла деятельности отдельного народа в области развития М. только на одной нации, на древних греках.
Донаучный периодПравить
Усвоение приобретённых человечеством знаний греками, как нацией, далеко отставшей от передовых народов, началось с особенно усилившегося, после изгнания гиксов из Египта, перехода егип. знаний к народам Малой Азии и в самую Грецию. В течение очень большого промежутка времени, от 1700 г. и ранее и до 600 г. до н.э., эти знания были исключительно практического характера, относящиеся к потребностям обыденной жизни и к необходимейшим промыслам, ремёслам и искусствам.
В области М. переход научных знаний из Египта в Грецию начался с возвращения, около 590 г. до н.э., Фалеса Милетского на родину, в Милет, после долговременного пребывания в Египте. Принесённые им оттуда геометрические и астрономически сведения составляли первое время почти исключительное достояние основанной им ионийской школы. Но это время было очень непродолжительно, так как труд перенесения египетских, а затем и халдейских математических знаний скоро взяли на себя и другие лица: Пифагор Самосский, Энопид Хиосский и Демокрит из Абдеры.
Особенно много сделал в этом направлении Пифагор, что и было главной причиной широкого развития занятий М. в основанной им пифагорейской школе. Так как последовательные стадии развития человечества никогда не сменяют друг друга резко, то в этой школе ещё до окончания периода усвоения исследователь встречается уже с проявлениями самостоятельной деятельности греков в области М. Различить однако же в том, что нам известно о математических знаниях пифагорейцев, принадлежащее им самим от заимствованного у египтян и халдеев, в настоящее время нет пока никакой возможности. После разрушения, около 450 г. до н.э., представляемого этою школой религиозного братства, её математические знания, строго оберегаемые наравне со всеми другими знаниями от распространения между лицами, не принадлежащими к союзу, сделались общим достоянием греческой нации.
Особенно широкое распространение получили они на родине пифагорейского союза, в греческих колониях Южной Италии, или в так называемой Великой Греции, и в Афинах. В Италии это распространение создало италийскую математическую школу, крупнейшими представителями которой в последующее время были Архит Тарентский, Эвдокс Книдский и Архимед. В Афинах распространение пифагорейских математических знаний выразилось в деятельности математиков V стол., крупнейшим представителем которых был пифагореец Гиппократ Хиосский. Деятельность эта была посвящена главным образом попыткам решения трёх знаменитых задач: трисекции угла, квадратуры круга и удвоения куба. Этому же столетию принадлежит и первая попытка составления свода геометрических знаний в научной обработке, сделанная Гиппократом Хиосским.
С деятельностью математиков V ст., кроме значительного усиления самостоятельности математических работ греческих учёных, связываются в истории М. два важных момента: начало дедуктивного периода развития М., которое в действительности, может быть, относится к ещё более раннему времени, напр. к пифагорейской школе или даже к самому Египту, и полное выяснение направления и характера математического гения греческой нации, который с этого времени начал проявлять такую исключительную склонность к геометрическим исследованиям, что на них, можно сказать, сосредоточилась вся деятельность греческой нации в области математики до самого наступления периода упадка. С началом дедуктивного периода закончился в истории развития математики во всем человечестве первоначальный, донаучный период.
Период АкадемииПравить
Период усвоения греками математических знаний, приобретённых человечеством, можно считать закончившимся ко времени деятельности Платона, который хотя и ездил в Египет с целью непосредственного ознакомления с египетскими науками, но, по высокому сравнительно состоянию математических знаний в пифагорейской школе и у математиков V ст., он едва ли мог найти в египетской математике что-нибудь, оставшееся для греков неизвестным. Итак, период вполне самостоятельной деятельности греков в области М. начинается с деятельности Платона и основанной им в 389 г. Философской школы, известной под именем Академии, или даже ещё ранее, с работ математиков V ст. С этого времени последующее развитие, если не всей М. вообще, то, несомненно, геометрии, сосредоточивается исключительно в руках одной греческой нации, которая и ведёт его, пока находит в своём распоряжении необходимые средства.
Главным результатом о математической деятельности самого Платона было создание философии М. и в частности её методологии. Как известно, его собственные работы очень мало касались увеличения математических знаний в количественном отношении и были направлены главным образом на установление строгих и точных определений основных понятий геометрии, на обнаружение и отведение настоящего места её основным положениям, на приведение приобретённых ранее математических знаний в строгую логическую связь как между собой, так и с основными понятиями и положениями, и наконец, на приведение в полную ясность и изучение методов открытия и доказательства новых истин, методов, хотя уже давно употребляемых в науке, но ещё не выяснившихся в достаточной степени перед сознанием. Методов, разработанных Платоном, по свидетельству Прокла, было три: аналитический, синтетический и апагогический. Особенной новизной для современников Платона отличались, по-видимому, результаты произведённого им изучения аналитического метода, как это можно видеть из того, что Диоген Лаэрций и с меньшей уверенностью Прокл смотрят на этот метод как на нововведение Платона. В дошедших до нас сочинениях Платона не содержится никаких сведений об его исследованиях по рассматриваемому предмету, так что для суждения об их результатах нам не остаётся ничего другого, как воспользоваться определением этих методов у первого по времени известного нам писателя, который его даёт. Таким писателем является Эвклид, по определению которого «анализ есть принятие искомого как бы найденным, чем через следствия достигается то, что найдено истинным, а синтез есть принятие уже найденного, чем через следствия достигается то, что найдено истинным». Изложенные, на основании позднейших исследований предмета, более полным и главное более определённым образом, эти определения представляются в следующем виде.
Аналитический метод состоит в образовании цепи предложений, из которых каждое вытекает из следующего за ним, как непосредственное следствие. Первым звеном этой цепи служит доказываемое предложение, последним — предложение уже доказанное. Схема метода такова: требуется доказать существование D. Доказательство: D существует, если С существует; С существует, если В существует; В существует, если А существует, но существование А есть уже доказанная истина, следовательно, и существование D доказано, так как правильно выведенное следствие предложения, представляющего истину, всегда есть истина. Если между двумя следующими одно за другим предложениями цепи существует обратимость, т.е. если при следовании справедливости первого предложения из справедливости второго, также следует обратно и справедливость второго из справедливости первого, то отыскивание этого второго предложения при составлении цепи, как предложения, из которого первое вытекает как следствие, может быть заменено более лёгким действием вывода второго предложения, как следствия первого. Если обратимость предложений распространяется на всю цепь, то аналитический метод принимает более лёгкую частную форму, состоящую в образовании цепи предложений, из которых каждое есть непосредственное следствие предыдущего. Эту частную форму обыкновенно и принимают за выраженную определением Эвклида, хотя неопределённость его выражения и не даёт для этого достаточного основания. Если же принять во внимание, что, при непонимании значения обратимости предложений, греческие геометры, употребляя эту форму, должны были беспрестанно приходить к ложным выводам, то придётся заключить, что путём горького опыта они должны были прийти к употреблению общей формы анализа, как никогда не обманывающей возлагаемых на неё надежд.
Синтетический метод есть обращение аналитического и поэтому состоит в образовании цепи предложений, из которых первое есть доказанная истина, а каждое из последующих есть следствие ему предшествующего.
Об апагогическом методе, или методе приведения к нелепости (reductio ad absurdum), Эвклид не говорит, но довольно ясное его определение наряду с неясными определениями анализа и синтеза даёт Прокл, при своём приписывании их Платону; «Третий (апагогический) метод, — говорит он, — есть приведение к невозможному, которое не доказывает прямо того, что ищется, а опровергает то, что ему противоречит, и таким образом через связь того и другого находит истину». В основании этого метода лежит истина, что если из двух предложений одно вполне отрицает другое, или, другими словами, если два предложения противоречащие, то для убеждения в справедливости одного достаточно показать ложность другого.
Аналогический метод есть собственно видоизменение аналитического, в котором первым звеном цепи предложений вместо доказываемого предложения является его отрицание, а последним какое-нибудь заведомо ложное или нелепое предложение. Учёные математики, принадлежавшие к Академии во все время её существования, распадались на две группы: на учёных, получивших своё математическое образование независимо от Академии и находившихся только в более или менее тесных сношениях с ней, и на бывших учеников Академии. К числу первых принадлежали Теэтет Афинский, Леодам Фасосский, Архит Тарентский и позднее Эвдокс Книдский; к числу вторых — Неоклид, Леон, Амикл из Гераклеи, братья Менехм и Динострат, и во время старости Платона —Теюдий из Магнезии, Кизикен Афинский, Гермотим Колофонский, Филипп Мендейский и Филипп Опунтский.
В школе Платона часто по его указаниям, а иногда и при непосредственном руководстве, продолжалась разработка планиметрии, получила значительное движение вперёд мало разработанная ранее стереометрия, создалось учение о конических сечениях и более общее о геометрических местах. Кроме того, в ней продолжал своё развитие получивший, насколько нам известно, начало в трудах Гиппократа Хиосского метод исчерпывания, о котором мы будем говорить далее, и были сделаны две новые попытки составления книги «Элементов» геометрии: Леоном в начале существования Академии, и Теюдием из Магнезии в конце жизни Платона. «Элементы» Леона замечательны по введению в них впервые так назыв. диоризма, то есть исследования задачи, состоящего в рассмотрении условий возможности или невозможности её решения, а также в первом случае и в определении числа её различных решений.
Из математиков, современных Академии, но не принадлежавших к ней, более известны нам по своей деятельности Автолик из Питаны и Аристей Старший. Создание в школе Платона философии М. должно было повести необходимым образом к разработке существенно необходимой для неё истории М. Дело этой разработки взяла на себя основанная учеником Платона, Аристотелем, школа перипатетиков в лице двух своих представителей, Эвдема Родосского и Теофраста Лесбосского. Нельзя не заметить, что в трудах по истории М. этих учёных заключается всё крупное, что было сделано школой перипатетиков для развития наук математических. Покровительство науке, оказываемое династией Птолемеев, царей новой греко-египетской монархии, возникшей после смерти Александра Македонского на почве древнего Египта, сделало, приблизительно с 300 г. до н.э., из столицы этой монархии, Александрии, главный центр умственной и духовной жизни греческого мира. Щедрые денежные пожертвования на дело науки и просвещения со стороны династии Птолемеев, и особенно трёх первых из них: Птолемея Сотера, Птолемея Филадельфа и Птолемея Эвергета, привлекли в Александрию выдающихся представителей науки древней Греции и собрали в Александрийской библиотеке все сокровища греческой учёной и изящной литературы. Самыми крупными из представителей М. в Александрии были Эвклид, Эратосфен и Аполлоний Пергский. Написанные Эвклидом «Элементы» геометрии закончили собой ряд попыток составления сочинений того же рода. До нынешнего времени остаются они произведением, не имеющим в своей области себе равного. Также классическим, хотя и далеко не в такой степени, является завершившее собой развитие учения о конических сечениях в древней Греции сочинение Аполлония Пергейского: «Восемь книг о конических сечениях», заключающее в себе все сделанное в этой области самим автором, его предшественниками и современниками.
Старшим современником Эратосфена и Аполлония Пергского был самый крупный математик своей эпохи, представитель италийской школы, Архимед. Из его работ особенно важное значение должно быть признано за исследованиями, относящимися к коническим сечениям, к происходящим от них телам вращения и к спиралям. Во всех этих исследованиях, так же как и при решении некоторых вопросов планиметрии и стереометрии, он широко пользовался методом исчерпывания, который в его руках достиг наибольшей доступной ему высоты развития.
Началом развития метода являются первые попытки раскрытия отношений, существующих между простейшей криволинейной фигурой, кругом, и фигурами прямолинейными. После того как было найдено, что площади правильных одноимённых многоугольников относятся как квадраты диаметров описанных округов, сама собой должна была явиться мысль о возможности перехода от этих многоугольников к кругам через посредство удваивания числа сторон многоугольников, делающего периметры последних все более и более близкими к окружностям кругов. Но так как уходящее в бесконечность удваивание числа сторон многоугольника, а вместе с ним и беспредельные приближение периметра того же многоугольника к окружности, не дают места непосредственному усмотрению, то явилась необходимость для удержания за очевидностью её прав в принятии основанием всех исследований рассматриваемого рода такого вспомогательного предложения, с помощью которого требования очевидности были бы удовлетворены. Таким предложением в «Элементах» Эвклида является следующее:
|
Так как в устанавливаемом этой теоремой процессе всякий остаток сравним со следующим за ним, то строгие требования греческой геометрии являются удовлетворёнными. С помощью этой теоремы Эвклид доказывает, что всякий конус составляет третью часть цилиндра, имеющего одинаковые с ним основание и высоту; из тех же оснований он выводит, что круги относятся как квадраты их диаметров, что треугольные пирамиды, конусы, цилиндры при одной и той же высоте относятся соответственно, как площади их оснований; что отношение шаров равно отношению кубов их диаметров.
С гораздо большей строгостью относился к методу исчерпывания Архимед, положивший в его основание теорему:
|
Пользуясь этой теоремой, Архимед даёт, например, два способа решения вопроса о квадратуре параболы. Общий приём, заключающийся как в этих двух, по-видимому, очень различных способах, так и в подобных им, относящихся к другим родам протяжений, состоит в том, что определяемая величина рассматривается как предел ряда каких-нибудь величин, находящихся к ней в известном отношении. Но так как для практических приложений этого приёма не было выработано никаких общих правил, как относительно закона составления требуемых им рядов и формы их членов, так даже и относительно самого выбора ряда, который бы мог привести к цели, то исследователь получал в этом приёме только одни неопределённые общие указания на находящийся в его распоряжении путь исследования; во всем же остальном он был предоставлен собственной эрудиции и собственному остроумию. Это и было причиной, что только в руках такого гениального геометра, как Архимед, метод исчерпывания мог получить сколько-нибудь значительные приложения.
Период упадкаПравить
В деятельности Эвклида, Аполлония Пергейского и особенно Архимеда период самостоятельной деятельности греков в области М. достиг момента наибольшей высоты математических исследований как в количественном, так и в качественном отношении. Затем начинается период упадка. Работы греческих математиков мельчают. Дело идёт уже не о создании новых отраслей науки и решении её труднейших вопросов, а о пополнении тех, говоря относительно, неважных пробелов, которые были оставлены предыдущим быстрым развитием науки. В этой первой фазе упадка деятельность представителей математики: Никомеда, Диоклеса, Персея, Зенодора, Гипсикла Александрийского, астронома Гиппарха, всё ещё остаётся верной прежнему направлению, которое, как продукт характеристических свойств и особенностей греческой нации, может быть названо национальным. Материалы для этой деятельности черпались действительно из отраслей М., продолжение разработки которых было завещано предыдущей эпохой. Этими отраслями были: во-первых, элементарная геометрия и в ней главным образом стереометрия, где и после работ Эвклида и Архимеда все ещё оставались некоторые пробелы; во-вторых, кривые высших порядков, толчок к изучению которых был дан Архимедом через посредство его исследования спиральных линий, и в-третьих, числовая геометрия, также указанная последующим математикам Архимедом в относящейся к ней его работе по предмету вычисления круга. К первой отрасли относились работы Зенодора (изопериметрические фигуры) и Гипсикла Александрийского (правильные многогранники), ко второй — работы Никомеда (конхоида), Диоклеса (циссоида) и Персея (спирали), и к третьей — работы Гиппарха (создание тригонометрии и вычисление хорд).
В следующую за тем фазу упадка, начавшуюся около 100 г. до н. э., прежняя стойкость греческого гения в удержании национального направления оказывается совершенно утраченной, и если работы греческих математиков могут считаться греческими, то только по языку, а никак не по духу. К тому же и авторами их являются в большинстве случаев лица, чистота греческого происхождения которых в высшей степени сомнительна. Первым из чуждых греческому гению направлений, явившихся на смену национального, было прикладное направление, развившееся на почве древнего Египта, бывшее, по всей вероятности, наследием египетской М., об утилитарном направлении которой во времена составления папируса Ринда уже говорилось ранее.
Первое и едва ли не самое резкое выражение нашло это направление в самом начале своего развития, ок. 100 г. до н. э., в сочинениях Герона Александрийского, посвящённых главным образом разработке геодезии и механики и во многом напоминающих приёмы, формы, а изредка даже и содержание египетской М.
К этому же направлению должна быть отнесена и вызванная потребностями астрономии разработка тригонометрии, начатая в трудах Гиппарха ещё в эпоху национального направления и потому являющаяся звеном, связующим последнее с прикладным направлением. Самыми крупными деятелями разработки тригонометрии были Менелай Александрийский и Клавдий Птолемей. Связующий национальное и прикладное направления характер этой разработки выражается как в трудах по геометрии самого Птолемея, так и в ещё большей степени в геометрических работах второстепенных деятелей эпохи: Геминуса Родосского, Феодосия из Триполи, Дионисодора и Серенуса из Антиссы.
Как на известного нам представителя эпохи упадка этого направления можно указать на Секста Юлия Африканского, бывшего, несмотря на своё римское имя, греческим писателем.
Ещё более чуждым греческому гению было арифметическо-алгебраическое направление, получившее начало в неопифагорейской школе, образовавшейся в I ст. н. э. Деятелями арифметики в этой школе были: Никомах Геразский, Теон Смирнский и Тимарид. Продолжение работ неопифагорейцев в области арифметическо-алгебраического направления взяла на себя основанная во II в. н. э. неоплатоновская школа в лице главным образом двух своих представителей, Порфирия и Ямвлиха.
Но самым крупным деятелем в области арифметическо-алгебраического направления, закончившим его развитие, был стоявший вне философских школ Диофант Александрийский. На работы этого учёного следует смотреть как на последнюю яркую вспышку угасающей греческой математической науки, напомнившую её славное прошлое и более уже не повторявшуюся.
Третьей фазой упадка греч. М. была эпоха исключительной деятельности комментаторов великих произведений греческой математической литературы прошлого времени. Крупным представителем начала этой эпохи, подобного которому в дальнейшем её течении уже не встречалось, был Папп Александрийский. Он, действительно, в своём «Собрании», этом важнейшем из его сочинений, был ещё в состоянии к изложению содержания сочинений рассматриваемых им авторов присоединять от себя различные предложения, объясняющие или дополняющие предмет, хотя нередко и стоящие с ним в очень отдалённой связи. Этой способностью, всё ещё вносящей в науку кое-что новое, последующие деятели рассматриваемой эпохи: Теон Александрийский, его дочь Ипатия, Прокл Диадох, Дамаский, Эвтокий Аскалонский, Асклепий из Траллеса и Иоанн Филопон уже не обладали.
Четвёртой, и последней, фазой упадка греческой математики была эпоха византийских учёных, продолжавшаяся от VII века н. э. до взятия турками Константинополя (1453). В эту эпоху произведения древних греческих математиков сделались до того недоступными новым, что о самом их существовании эти последние нередко узнавали от арабов и персов; в то время, когда арабские математики прилагали все усилия к тому, чтобы иметь на своём языке переводы всех сколько-нибудь выдающихся в греческой математической литературе произведений, византийские математики не были в силах справляться даже с самыми незначительными элементарными произведениями арабской математической литературы и для переделок переводов на греческий язык нужных им сочинений обращались уже к совершенно ничтожной математической литературе персов, представляемой, напр., такими писателями как Шамсальдин Бухарский. Особенного развития это пользование персидскими отголосками таких произведений прежней греческой литературы, как Алмагест, достигло в XIV в. в трудах Хиониада Константинопольского, Георга Хризокоццеса, Фёдора Мелитениота и монаха Исаака Аргиры.
Кроме этих учёных, деятелями рассматриваемой эпохи в области М., оставившими более или менее заметный след в византийской литературе, были Михаил Пселл, Николай Кабазилас, монах Варлаам, Иоанн Педиазимус, или Галенус, Максим Плануд, Николай Рабда из Смирны и Мануил Москопул.
ЛитератураПравить
История математики под редакцией А. П. Юшкевича (в трёх томах):
- Э. Т. Белл. Творцы математики. (1979)
- Г.Вилейтнер. История математики от Декарта до середины XIX столетия. (1960)
- С. Г. Гиндикин. Рассказы о физиках и математиках. (2001)
- Г. И. Глейзер. История математики в школе. (1964)
- И. Я. Депман. История арифметики. (1965)
- В. Ф. Каган. Лобачевский. (1948)
- Г. П. Матвиевская. Рене Декарт. (1987)
- Б. А. Розенфельд. Аполлоний Пергский. (2004)
- А. И. Маркушевич. Очерки по истории теории аналитических функций. (1951)