Полиэтилен
Полиэтилен — полимер этилена (этена).
ПолучениеПравить
На обработку поступает в виде гранул от 2 до 5 мм. Полиэтилен получают полимеризацией этилена:
Получение полиэтилена высокого давленияПравить
Полиэтилен высокого давления (ПЭВД), или Полиэтилен низкой плотности (ПЭНП) образуется при следующих условиях:
- температура 150—320°C;
- давление 150—300 МПа;
- присутствие инициатора (кислород или органический пероксид);
в автоклавном или трубчатом реакторах. Реакция идёт по радикальному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000-500 000 и степень кристалличности 50-60 %. Жидкий продукт впоследствии гранулируют. Реакция идёт в расплаве.
Получение полиэтилена среднего давленияПравить
Полиэтилен среднего давления (ПЭСД) образуется при следующих условиях:
- температура около 150°C;
- давление 3—4 МПа;
- присутствие катализатора (катализаторы Циглера—Натта (англ.), например, смесь TiCl4 и AlR3);
продукт выпадает из раствора в виде хлопьев. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 300 000-400 000, степень кристалличности 80-90 %.
Получение полиэтилена низкого давленияПравить
Полиэтилен низкого давления (ПЭНД) или Полиэтилен высокой плотности (ПЭВП) образуется при следующих условиях:
- температура около 80°C;
- давление ниже 4 МПа;
- присутствие катализатора (катализаторы Циглера—Натта, например, смесь TiCl4 и AlR3);
Полимеризация идёт в суспензии по ионно-координационному механизму. Получаемый по этому методу полиэтилен имеет средневесовой молекулярный вес 80 000—3 000 000, степень кристалличности 75-85 %.
Следует иметь в виду, что названия "полиэтилен низкого давления", "среднего давления", "высокой плотности" и т. д. имеют чисто историческое значение. Так, полиэтилен, получаемый по 2- и 3-му методам, имеет одинаковую плотность и молекулярный вес. Давление в процессе полимеризации при так называемых низком и среднем давлениях в ряде случаев одно и то же.
Другие способы получения полиэтиленаПравить
Существуют и другие способы полимеризации этилена, например под влиянием радиоактивного излучения, однако они не получили промышленного распространения.
Модификации полиэтиленаПравить
Ассортимент полимеров этилена может быть значительно расширен получением сополимеров его с другими мономерами, а также путем получения композиций при компаундировании полиэтилена одного типа с полиэтиленом другого типа, полипропиленом, полиизобутиленом, каучуками и т. п.
На основе полиэтилена и других полиолефинов могут быть получены многочисленные модификации — привитые сополимеры с активными группами, улучшающими адгезию полиолефинов к металлам, окрашиваемость, снижающими его горючесть и т. д.
Особняком стоят модификации так называемого "сшитого" полиэтилена ПЕх (PEx). Суть сшивки состоит в том, что молекулы в цепочке соединяются не только последовательно, но и образуются боковые связи которые соединяют цепочки между собой, за счет этого достаточно сильно изменяются физические и в меньшей степени химические свойства изделий. Различают 4 вида сшитого полиэтилена (по способу производства): пероксидный (а), силановый (b), радиационный (с) и азотный (d). Наибольшее распространение получил РЕх-b, как наиболее быстрый и дешёвый в производстве.
Молекулярное строениеПравить
Макромолекулы полиэтилена высокого давления (n≅1000) содержат боковые углеводородные цепи C1—С4, молекулы полиэтилена среднего давления практически неразветвлённые, в нём больше доля кристаллической фазы, поэтому этот материал более плотный; молекулы полиэтилена низкого давления занимают промежуточное положение. Большим количеством боковых ответвлений объясняется более низкая кристалличность и соответственно более низкая плотность ПЭВД по сравнению с ПЭНД и ПЭСД.
Показатели, характеризующие строение полимерной цепи различных видов полиэтилена, приведены в таблице:
Общие свойстваПравить
Термопласт белого цвета, легко окрашивается во все цвета, тонкие листы прозрачны и бесцветны. Воскообразный на ощупь. Не чувствителен к удару, плохо склеивается. При повышении плотности возрастают жёсткость, предел прочности на разрыв, поверхностная твёрдость, температура начала размягчения (≅80—120°С).
Полиэтилен высокого давленияПравить
Параметр | Значение |
---|---|
Плотность, г/см3 | 0,918-0,930 |
Разрушающее напряжение, кгс/см2 | |
при растяжении | 100-170 |
при статическом изгибе | 120-170 |
при срезе | 140-170 |
относительное удлинение при разрыве, % | 500-600 |
модуль упругости при изгибе, кгс/см2 | 1200-2600 |
предел текучести при растяжении, кгс/см2 | 90-160 |
относительное удлинение в начале течения, % | 15-20 |
твёрдость по Бринеллю, кгс/мм2 | 1,4-2,5 |
С увеличением скорости растяжения образца разрушающее напряжение при растяжении и относительное удлинение при разрыве уменьшаются, а предел текучести при растяжении возрастает.
С повышением температуры разрушающее напряжение полиэтилена при растяжении, сжатии, изгибе и срезе понижается. а относительное удлинение при разрыве возрастает до определенного предела, после которого также начинает снижаться
Разрушающее напряжение, кгс/см2 | Температура, ºС | |||
---|---|---|---|---|
20 | 40 | 60 | 80 | |
при сжатии | 126 | 77 | 40 | - |
при статическом изгибе | 118 | 88 | 60 | - |
при срезе | 169 | 131 | 92 | 53 |
Температура, °С | -120 | -100 | -80 | -60 | -40 | -20 | 0 | 20 | 50 |
---|---|---|---|---|---|---|---|---|---|
Модуль упругости при изгибе, кгс/см2 | 28100 | 26700 | 23200 | 19200 | 13600 | 7400 | 3050 | 2200 | 970 |
Необходимо отметить, что свойства изделий из полиэтилена будут существенно зависеть от режимов их изготовления (скорости и равномерности охлаждения) и условий эксплуатации (температуры, давления, продолжительности. воздействия нагрузки и т. п.).
Полиэтилен низкого давленияПравить
Химические свойстваПравить
Общие свойстваПравить
Устойчив к действию воды, сильных кислот и щелочей, а также органических растворителей. При повышении плотности возрастает устойчивость по отношению к большинству органических растворителей.
ПереработкаПравить
Формование методами экструзии, литья под давлением, пневматического формования и обработка резанием.
ПрименениеПравить
- Материал для производства плёнок (особенно упаковочных), тары, труб, деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.; электроизоляционный материал.
- В настоящее время специальные составы полиэтилена находят применение в медицине, например, ортопедии. Это связано с его биологической совместимостью, прочностью, нужной эластичностью (cм.Рис.1, Артропластика в ортопедии)[1].