Фагоцитоз

Рис. 1t. Трансмембранная передача сигнала — свойство мембран — способность воспринимать и передавать внутрь клетки сигналы из внешней среды. Receptor:E=extracellular — Внеклеточное место — наружный сегмент мембраны колбочки, заполненный мембранными полудисками, образованными плазматической мембраной, и отделившимися от неё (обращённая к свету, наружная часть столбика из полудисков - постоянно обновляется, за счет фагоцитоза "засвеченных" полудисков клетками пигментного эпителия, и постоянного образования новых полудисков, в теле фоторецептора); I=intracellular — Внутриклеточное место — клеточная мембрана, мембрана P=plasma (обработка и передача сигнала) — внутренняя поверхность (см. рис.1а)

Фагоцито́з (др.-греч. φαγεῖν — пожирать и κύτος — клетка) — процесс, при котором специально предназначенные для этого клетки тканей организма, а также клеток мембран фоторецепторов сетчатки глаза колбочек, палочек (фагоциты) захватывают и переваривают твёрдые частицы. Осуществляется двумя разновидностями клеток: циркулирующими в крови зернистыми тканевыми макрофагами. Явление фагоцитоза было открыто канадским врачом Уильямом Ослером [1]. Дальнейшее его изучение принадлежит И. И. Мечникову, который выявил этот процесс, проделывая опыты с морскими звёздами и дафниями, вводя в их организмы инородные тела. Например, когда Мечников поместил в тело дафнии спору грибка, то он заметил, что на неё нападают особые подвижные клетки. Когда же он ввёл слишком много спор, клетки не успели их все переварить, и животное погибло. Клетки, защищающие организм от бактерий, вирусов, спор грибов и пр., Мечников назвал фагоцитами.

У человека различают два типа профессиональных фагоцитов:

У некоторых других животных фагоцитировать могут ооциты, плацентные клетки, клетки, выстилающие полость тела, пигментный эпителий сетчатки глаза[2].

Основные этапы фагоцитарной реакции сходны для клеток обоих типов. Реакция фагоцитоза может быть подразделена на несколько этапов:

1. Хемотаксис. В реакции фагоцитоза более важная роль принадлежит положительному хемотаксису. В качестве хемоаттрактантов выступают продукты выделяемые микроорганизмами и активированными клетками в очаге воспаления (цитокины, лейкотриен В4, гистамин), а также продукты расщепления компонентов комплемента (С3а, С5а), протеолитические фрагменты факторов свертывания крови и фибринолиза (тромбин, фибрин), нейропептиды, фрагменты иммуноглобулинов и др. Однако, «профессиональными» хемотаксинами служат цитокины группы хемокинов.

Ранее других клеток в очаг воспаления мигрируют нейтрофилы, существенно позже поступают макрофаги. Скорость хемотаксического перемещения для нейтрофилов и макрофагов сопоставима, различия во времени поступления, вероятно, связаны с разной скоростью их активации.

2. Адгезия фагоцитов к объекту. Обусловлена наличием на поверхности фагоцитов рецепторов для молекул, представленных на поверхности объекта (собственных или связавшихся с ним). При фагоцитозе бактерий или старых клеток организма хозяина происходит распознавание концевых сахаридных групп — глюкозы, галактозы, фукозы, маннозы и др., которые представлены на поверхности фагоцитируемых клеток. Распознавание осуществляется лектиноподобными рецепторами соответствующей специфичности, в первую очередь маннозосвязывающим белком и селектинами, присутствующими на поверхности фагоцитов.

В тех случаях, когда объектами фагоцитоза являются не живые клетки, а кусочки угля, асбеста, стекла, металла и др., фагоциты предварительно делают объект поглощения приемлемым для осуществления реакции, окутывая его собственными продуктами, в том числе компонентами межклеточного матрикса, который они продуцируют.

Хотя фагоциты способны поглощать и разного рода «неподготовленные» объекты, наибольшей интенсивности фагоцитарный процесс достигает при опсонизации, т. е. фиксации на поверхности объектов опсонинов к которым у фагоцитов есть специфические рецепторы - к Fc-фрагменту антител, компонентам системы комплемента, фибронектину и т. д.

3. Активация мембраны в том числе мембраны фоторецепторов под действием светового сигнала. На этой стадии осуществляется подготовка объекта к погружению или обновлению внешних долей мембран фоторецепторов сетчатки глаза (см. Трансмембранная передача сигнала). Происходит активация протеинкиназы С, выход ионов кальция из внутриклеточных депо. Большое значение играют переходы золь-гель в системе клеточных коллоидов и актино-миозиновые перестройки.

Рис.3. Эмбриональное развиие колбочек и палочек.[3]

На примере (рис. 3) показано развитие экстерорецепторов, где можно увидеть фагоцитоз — (захват) инвагинации (втягивание во внутрь) мембран при захвате части внеклеточного пространства, превращающегося во внутридисковое.

  • (А) Эмбриональное развитие.
  • (I) экстерорецепторная клетка развивается из ресничной клетки, выстилающей глазной пузырь. У каждой клетки — одна ресничка.
  • (II) Ресничка растет, ее мембрана гипертрофируется и начинает инвагинировать.
  • (III) Гипертрофия ресничной мембраны и инвагинация ее у основания наружного сегмента продолжаются. Исходные внутренние ультраструктуры реснички сохраняются в области <соединительной реснички>, соединяющей наружный и внутренний сегменты. (IV) Более детальное изображение, показанного на (III) — инвагинации мембран захватывают часть внеклеточного пространства, превращающегося во внутридисковое. Пространство между дисками — цитоплазматическое.
Рис.1. Строение колбочки (сетчатка).
1 — мембранные полудиски;
2 — митохондрия;
3 — ядро (эллипс с жировой каплей);
4 — синаптическая область;
5 — связующий отдел (перетяжка);
6 — наружный сегмент;
7 — внутренний сегмент;
8 — граница мембранной части;
9 — пигмент сократимых фибрилл клетка развивается из ресничной клетки, выстилающей глазной пузырь.

Например, в мембране фоторецепторов сетчатки глаза происходит следующее:

  • Обращённая к свету, наружная часть мембраны, например, колбочек из мембранных полудисков — постоянно обновляется, за счет фагоцитоза "засвеченных" полудисков клетками пигментного эпителия, и постоянного образования новых полудисков в теле фоторецептора. Так происходит регенерация зрительного пигмента. В среднем, за сутки фагоцитируется около 80 полудисков, а полное обновление всех полудисков фоторецептора происходит, примерно, за 10 дней.

4. Погружение. Происходит обволакивание объекта.

5. Образование фагосомы. Замыкание мембраны, погружение объекта с частью мембраны фагоцита внутрь клетки.

6. Образование фаголизосомы. Слияние фагосомы с лизосомами, в результате чего образуются оптимальные условия для бактериолиза и расщепления убитой клетки. Механизмы сближения фагосомы и лизосом неясны, вероятно имеется активное перемещение лизосом к фагосомам.

7. Киллинг и расщепление. Велика роль клеточной стенки перевариваемой клетки. Основные вещества участвующие в бактериолизе: пероксид водорода, продукты азотного метаболизма, лизоцим и др. Процесс разрушения бактериальных клеток завершается благодаря активности протеаз, нуклеаз, липаз и других ферментов, активность которых оптимальна при низких значениях pH.

8. Выброс продуктов деградации.

Фагоцитоз может быть:

  • завершённым (киллинг и переваривание прошло успешно);
  • незавершённым (для ряда патогенов фагоцитоз является необходимой ступенью их жизненного цикла, например, у микобактерий и гонококков).

См. такжеПравить

ПримечанияПравить

  1. http://www.sciencedirect.com/science/article/pii/S0008874906000797
  2. Биологический энциклопедический словарь / глав. ред. М. С. Гиляров. — М.: Советская энциклопедия, 1986. — С. 664.
  3. http://humbio.ru/humbio/ssb/16_5b_bss.htm