Митохондриальная ДНК

(перенаправлено с «Мт-ДНК»)
Схема митохондриального генома человека

Митохондриальная ДНК (Мт-ДНК) — дезоксирибонуклеиновая кислота митохондрий: органоидов эукариотических клеток. Длина Мт-ДНК составляет всего 16 с половиной тысяч нуклеотидов и содержит 37 генов (или — кодирующих последовательностей), а также контрольную область — размером 1122 пар каждого нуклеотида, называемую D-петлей.

История открытияПравить

Митохондриальная ДНК была открыта Маргит Насс и Сильвен Насс в 1963 году в Стокгольмском университете при помощи электронной микроскопии[1] и, независимо, учеными Эллен Харлсбруннер, Хансом Туппи и Готтфридом Шацем при биохимическом анализе фракций митохондрий дрожжей в Венском университете в 1964 году.[2]

Теории возникновения митохондриальной ДНКПравить

Согласно эндосимбиотической теории, митохондриальная ДНК произошла от кольцевых молекул ДНК бактерий и поэтому имеет иное происхождение, чем ядерный геном. Сейчас преобладает точка зрения, согласно которой митохондрии имеют монофилетическое происхождение, то есть были приобретены предками эукариот лишь однажды.

На основании сходства в последовательностях нуклеотидов ДНК ближайшими родственниками митохондрий среди ныне живущих прокариот считают альфа-протеобактерий (выдвигалась также гипотеза, что к митохондриям близки риккетсии). Сравнительный анализ геномов митохондрий показывает, что в ходе эволюции происходило постепенное перемещение генов предков современных митохондрий в ядро клетки. Необъяснимыми с эволюционной точки зрения остаются некоторые особенности митохондриальной ДНК (например, довольно большое число интронов, нетрадиционное использование триплетов и др.). Ввиду ограниченного размера митохондриального генома бо́льшая часть митохондриальных белков кодируется в ядре. При этом бо́льшая часть митохондриальных тРНК кодируются митохондриальным геномом.

Формы и число молекул митохондриальной ДНКПравить

 
Электронная микроскопия демонстрирует определённую локализацию мтДНК в митохондриях человека. Разрешение 200 нм. (A) Сечение через цитоплазму после окрашивания мтДНК частичками золота. (B) Цитоплазма после экстракции; мтДНК, связанные с частичками золота, остались на месте. Из статьи Iborra et al., 2004.[3]

У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы.[4]

Митохондрии млекопитающих обычно содержат от двух до десяти идентичных копий кольцевых молекул ДНК.[5]

У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.

У протистов из отряда кинетопластид (например, у трипаносом) в особом участке митохондрии (кинетопласте) содержится два типа молекул ДНК — идентичные макси-кольца (20-50 штук) длиной около 21 т.п.о. и мини-кольца (20 000 — 55 000 штук, около 300 разновидностей, средняя длина около 1000 п.о.). Все кольца соединены в единую сеть (катенаны), которая разрушается и восстанавливается при каждом цикле репликации. Макси-кольца гомологичны митохондриальной ДНК других организмов. Каждое мини-кольцо содержит четыре сходных консервативных участка и четыре уникальных гипервариабельных участка.[6] В мини-кольцах закодированы короткие молекулы направляющих РНК (guideRNA), которые осуществляют редактирование РНК, транскрибируемых с генов макси-колец.

Устойчивость митохондриальной ДНКПравить

Митохондриальная ДНК особенно чувствительна к активным формам кислорода, генерируемым дыхательной цепью, в связи с непосредственной их близостью. Хотя митохондриальная ДНК связана с белками, их защитная роль менее выражена, чем в случае ядерной ДНК. Мутации в ДНК митохондрий могут вызывать наследственные заболевания, а также являются одной из основных причин старения и болезней, связанных со старостью. У человека митохондриальная ДНК обычно присутствует в количестве 100-10000 копий на клетку (сперматозоиды и яйцеклетки являются исключением). С множественностью митохондриальных геномов связаны особенности проявления митохондриальных болезней — обычно позднее их начало и очень изменчивые симптомы.

Митохондриальная наследственностьПравить

Наследование по материнской линииПравить

У большинства многоклеточных организмов митохондриальная ДНК наследуется по материнской линии. Яйцеклетка содержит на несколько порядков больше копий митохондриальной ДНК, чем сперматозоид. В сперматозоиде обычно не больше десятка митохондрий (у человека — одна спирально закрученная митохондрия), в небольших яйцеклетках морского ежа — несколько сотен тысяч, а в крупных ооцитах лягушки — десятки миллионов. Кроме того, обычно происходит деградация митохондрий сперматозоида после оплодотворения.[7]

При половом размножении митохондрии, как правило, наследуются исключительно по материнской линии, митохондрии сперматозоида обычно разрушаются после оплодотворения. Кроме того, большая часть митохондрий сперматозоида находятся в основании жгутика, которое при оплодотворении иногда теряется. В 1999 году было обнаружено, что митохондрии сперматозоидов помечены убиквитином (белком-меткой, которая приводит к разрушению отцовских митохондрий в зиготе).[8]

Так как митохондриальная ДНК не является высококонсервативной и имеет высокую скорость мутирования, она является хорошим объектом для изучения филогении (эволюционного родства) живых организмов. Для этого определяют последовательности митохондриальной ДНК у разных видов и сравнивают их при помощи специальных компьютерных программ и получают эволюционное древо для изученных видов. Исследование митохондриальных ДНК собак позволило проследить происхождение собак от диких волков.[9] Исследование митохондриальной ДНК в популяциях человека позволило вычислить «митохондриальную Еву», гипотетическую прародительницу всех живущих в настоящее время людей.

Наследование по отцовской линииПравить

Для некоторых видов показана передача митохондриальной ДНК по мужской линии, например, у мидий[10][11]. Наследование митохондрий по отцовской линии также описано для некоторых насекомых, например, для дрозофилы,[12] медоносных пчел[13] и цикад.[14]

Существуют также данные о митохондриальной наследственности по мужской линии у млекопитающих. Описаны случаи такого наследования для мышей,[15][16] при этом митохондрии, полученные от самца, впоследствии отторгаются. Такое явление показано для овец [17] и клонированного крупного рогатого скота.[18] Также описан единственный случай связанный с бесплодием у мужчины.[19].

Геном митохондрийПравить

У млекопитающих каждая молекула мтДНК содержит 15000-17000 пар оснований (у человека 16565 пар нуклеотидов — исследование закончено в 1981 году[20], по другому источнику 16569 пар[21]) и кодирует 37 генов — 13 кодируют белки, 22 — гены тРНК, 2 — рРНК (по одному гену для 12S и 16S рРНК). Другие многоклеточные несут схожий набор митохондриальных генов, хотя некоторые гены могут иногда отсутствовать. Разнообразие генного состава мтДНК растений, грибов и особенно протистов [22] различается более значительно. Так, у жгутиконосца-якобиды Reclinomonas americana найден наиболее полный из известных митохондриальных геномов: он содержит 97 генов, в том числе 62 гена, кодирующих белки (27 рибосомальных белков, 23 белка, участвующих в работе электрон-транспортной цепи и в окислительном фосфорилировании, а также субъединицы РНК-полимеразы).

Один из наиболее маленьких митохондриальных геномов имеет малярийный плазмодий (около 6.000 п.о., содержит два гена рРНК и три гена, кодирующих белки).

Недавно открытые рудиментарные митохондрии (митосомы) некоторых протистов (дизентерийной амёбы, микроспоридий и лямблий) не содержат ДНК.[23]

Митохондрии дрожжей содержат 78000 пар нуклеотидов[20].

Некоторые растения имеют огромные молекулы митохондриальной ДНК (до 25 миллионов пар оснований), при этом содержащие примерно те же гены и в том же количестве, что и меньшие мтДНК. Длина митохондриальной ДНК может широко варьировать даже у растений одного семейства. В митохондриальной ДНК растений имеются некодирующие повторяющиеся последовательности.

Геном человека содержит только по одному промотору на каждую комплементарную цепь ДНК[20].

Геном митохондрий человека кодирует следующие белки и РНК:

Белки или РНК Гены
NADH-дегидрогеназа
(комплекс I)
MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6
Кофермент Q - цитохром c редуктаза/Цитохром b
(комплекс III)
MT-CYB
цитохром c оксидаза
(комплекс IV)
MT-CO1, MT-CO2, MT-CO3
АТФ-синтаза MT-ATP6, MT-ATP8
рРНК MT-RNR1 (12S), MT-RNR2 (16S)
тРНК MT-TA, MT-TC, MT-TD, MT-TE, MT-TF, MT-TG, MT-TH, MT-TI, MT-TK, MT-TL1, MT-TL2, MT-TM, MT-TN, MT-TP, MT-TQ, MT-TR, MT-TS1, MT-TS2, MT-TT, MT-TV, MT-TW, MT-TY, MT1X

Особенности митохондриальной ДНКПравить

В отличие от ядерной ДНК, Мт-ДНК локализуется исключительно в митохондриях. Кодирующие последовательности (кодоны) митохондриального генома имеют некоторые отличия от кодирующих последовательностей универсальной ядерной ДНК.
Так, кодон AUA кодирует в митохондриальном геноме метионин (вместо изолейцина в ядерной ДНК), кодоны AGA и AGG — терминаторные кодоны (в ядерной ДНК кодируют аргинин), кодон UGA в митохондриальном геноме кодирует триптофан[20].
Если говорить точнее, то речь идёт не о митохондриальной ДНК, а о мРНК, которая списывается (транскрибируется) с этой ДНК перед началом синтеза белка. Буква U в обозначении кодона обозначает уридин, который при транскрипции гена в РНК заменяет тимин.
Количество генов тРНК (22 гена) меньше, чем в ядерном геноме с его 32 генами тРНК[20].
В человеческом митохондриальном геноме информация настолько сконцентрирована, что в последовательностях кодирующих мРНК, как правило, частично удалены нуклеотиды, соответствующие 3'-концевым терминаторным кодонам[20].

Применение исследований Мт-ДНКПравить

Кроме изучения для построения различных филогенетических теорий, изучение митохондриального генома — основной инструмент при проведении идентификации. Возможность индентификации связана с существующими в митохондриальном геноме человека групповыми и даже индивидуальными различиями.

«Вид мяса, как рассказывают ученые, определяется по фрагментам так называемой митохондриальной ДНК — особой части генома, которая записана не в ядре клетки, а в митохондриях, ее „энергостанциях“. Митохондрии передаются от матери к детям, и их геном почти не меняется со временем, что позволяет надежно определять виды и устанавливать родственные связи».[24]

ПримечанияПравить

  1. Nass, M.M. & Nass, S. (1963 at the Wenner-Gren Institute for Experimental Biology, Stockholm University, Stockholm, Sweden): Intramitochondrial Fibers with DNA characteristics (PDF). In: J. Cell. Biol. Bd. 19, S. 593—629. PMID 14086138
  2. Ellen Haslbrunner, Hans Tuppy and Gottfried Schatz (1964 at the Institut for Biochemistry at the Medical Faculty of the University of Vienna in Vienna, Austria): «Deoxyribonucleic Acid Associated with Yeast Mitochondria» (PDF) Biochem. Biophys. Res. Commun. 15, 127—132.
  3. Iborra FJ, Kimura H, Cook PR (2004). "The functional organization of mitochondrial genomes in human cells". BMC Biol. 2: 9. DOI:10.1186/1741-7007-2-9. PMID 15157274.
  4. Дымшиц Г. М. Сюрпризы митохондриального генома. Природа, 2002, N 6 [1]
  5. Wiesner RJ, Ruegg JC, Morano I (1992). "Counting target molecules by exponential polymerase chain reaction, copy number of mitochondrial DNA in rat tissues". Biochim Biophys Acta. 183: 553–559. PMID 1550563.
  6. http://gemi.mpl.ird.fr/PDF/jt01.pdf
  7. Ченцов Ю. С. Общая цитология. — 3-е изд.. — МГУ, 1995. — 384 с. — ISBN 5-211-03055-9о книге
  8. Sutovsky, P., et. al (Nov. 25, 1999). "Ubiquitin tag for sperm mitochondria". Nature 402: 371–372. DOI:10.1038/46466. PMID 10586873. Discussed in [2].
  9. Vilà C, Savolainen P, Maldonado JE, and Amorin IR (13 June 1997). "Multiple and Ancient Origins of the Domestic Dog". Science 276: 1687–1689. DOI:10.1126/science.276.5319.1687. ISSN 0036-8075. PMID 9180076.
  10. Hoeh WR, Blakley KH, Brown WM (1991). "Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA". Science 251: 1488–1490. DOI:10.1126/science.1672472. PMID 1672472.
  11. Penman, Danny. Mitochondria can be inherited from both parents, NewScientist.com, 23 August 2002. Проверено 2008-02-05.
  12. Kondo R, Matsuura ET, Chigusa SI (1992). "Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method". Genet. Res. 59 (2): 81–4. PMID 1628820.
  13. Meusel MS, Moritz RF (1993). "Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs". Curr. Genet. 24 (6): 539–43. DOI:10.1007/BF00351719. PMID 8299176.
  14. Fontaine, KM, Cooley, JR, Simon, C (2007). "Evidence for paternal leakage in hybrid periodical cicadas (Hemiptera: Magicicada spp.)". PLoS One. 9: e892. DOI:10.1371/journal.pone.0000892.
  15. Gyllensten U, Wharton D, Josefsson A, Wilson AC (1991). "Paternal inheritance of mitochondrial DNA in mice". Nature 352 (6332): 255–7. DOI:10.1038/352255a0. PMID 1857422.
  16. Shitara H, Hayashi JI, Takahama S, Kaneda H, Yonekawa H (1998). "Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage". Genetics 148 (2): 851–7. PMID 9504930.
  17. Zhao X, Li N, Guo W, et al (2004). "Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries)". Heredity 93 (4): 399–403. DOI:10.1038/sj.hdy.6800516. PMID 15266295.
  18. Steinborn R, Zakhartchenko V, Jelyazkov J, et al (1998). "Composition of parental mitochondrial DNA in cloned bovine embryos". FEBS Lett. 426 (3): 352–6. DOI:10.1016/S0014-5793(98)00350-0. PMID 9600265.
  19. Schwartz M, Vissing J (2002). "Paternal inheritance of mitochondrial DNA". N. Engl. J. Med. 347 (8): 576–80. DOI:10.1056/NEJMoa020350. PMID 12192017.
  20. а б в г д е Айала Ф. Д. Современная генетика. 1987.
  21. http://chemistry.umeche.maine.edu/CHY431/MitoDNA.html
  22. MW Gray, BF Lang, R Cedergren, GB Golding, C Lemieux, D Sankoff, M Turmel, N Brossard, E Delage, TG Littlejohn, I Plante, P Rioux, D Saint-Louis, Y Zhu and G Burger (1998). "Genome structure and gene content in protist mitochondrial DNAs". Nucleic Acids Research 26: 865-878.http://nar.oxfordjournals.org/cgi/content/abstract/26/4/865
  23. http://en.wikipedia.org/wiki/Mitosome#cite_note-Leon04-7
  24. http://kv-journal.su/content/rossiyskie-uchyonye-sozdali-dnk-test-pozvolyayushchiy-nayti-koshatinu-v-shaurme

СсылкиПравить

  • Mitomap — база данных по митохондриальному геному человека [3]

См. такжеПравить

Шаблон:Нуклеиновые кислоты

Шаблон:Cytology-stub