Нейромедиатор

Нейромедиаторы в синаптической щели

Нейромедиа́торы (НМ) (лат. mediator посредник: синоним нейромедиаторы) — биологически активные химические вещества, секретируемые нервными окончаниями и обусловливающие передачу нервных импульсов в синапсах посредством которых осуществляется передача электрического импульса от нервной клетки через синаптическое пространство между нейронами, а также, например, от нейронов к мышечной ткани. В качестве НМ могут выступать самые различные вещества. Всего насчитывается около 30 видов медиаторов, однако лишь семь из них (ацетилхолин, норадреналин, дофамин, серотонин, гамма-аминомасляную кислоту, глицин и глутаминовую кислоту) принято относить к «классическим» НМ.

Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель НМ. Молекулы НМ реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

КлассификацияПравить

Традиционно нейромедиаторы относят к трём группам:

АминокислотыПравить

  • ГАМК — важнейший тормозной нейромедиатор центральной нервной системы человека и млекопитающих.
  • Глицин — как нейромедиаторная аминокислота, проявляет двоякое действие. Глициновые рецепторы имеются во многих участках головного мозга и спинного мозга. Связываясь с рецепторами, глицин вызывает «тормозящее» воздействие на нейроны, уменьшают выделение из нейронов «возбуждающих» аминокислот, таких как глутамат, и повышают выделение ГАМК. Также глицин связывается со специфическими участками NMDA-рецепторов и, таким образом, способствует передаче сигнала от возбуждающих нейротрансмиттеров глутамата и аспартата. В спинном мозге глицин приводит к торможению мотонейронов, что позволяет использовать глицин в неврологической практике для устранения повышенного мышечного тонуса.
  • Глутаминовая кислота (глутамат) — наиболее распространённый возбуждающий нейротрансмиттер в нервной системе позвоночных, в нейронах мозжечка и спинного мозга.
  • Аспарагиновая кислота (аспартат) — возбуждающий нейромедиатор в нейронах коры головного мозга.

КатехоламиныПравить

  • Адреналин — относят к возбуждающим нейромедиаторам, но его роль для синаптической передачи остаётся неясной, также как не ясна она для нейромедиаторов VIP, бомбезин, брадикинин, вазопрессин, карнозин, нейротензин, соматостатин, холецистокинин.
  • Норадреналин — считается одним из важнейших «медиаторов бодрствования». Норадренергические проекции участвуют в восходящей ретикулярной активирующей системе. Является медиатором как голубоватого пятна (лат. locus coeruleus) ствола мозга, так и окончаний симпатической нервной системы. Количество норадренергических нейронов в ЦНС невелико (несколько тысяч), но у них весьма широкое поле иннервации в головном мозге.
  • Дофамин — является одним из химических факторов внутреннего подкрепления и служит важной частью «системы поощрения» мозга, поскольку вызывает чувство предвкушения (или ожидания) удовольствия (или удовлетворения), чем влияет на процессы мотивации и обучения.

Другие моноаминыПравить

  • Серотонин — играет роль нейромедиатора в ЦНС. Серотонинергические нейроны группируются в стволе мозга: в варолиевом мосту и ядрах шва. От моста идут нисходящие проекции в спинной мозг, нейроны ядер шва дают восходящие проекции к мозжечку, лимбической системе, базальным ганглиям, коре. При этом нейроны дорсального и медиального ядер шва дают аксоны, различающиеся морфологически, электрофизиологически, мишенями иннервации и чувствительностью к некоторым нейротоксичным агентам, например, метамфетамину.
  • Гистамин — некоторые количества гистамина содержатся в ЦНС, где, как предполагают, он играет роль нейромедиатора (или нейромодулятора). Не исключено, что седативное действие некоторых липофильных антагонистов гистамина (проникающих через гематоэнцефалический барьер противогистаминных препаратов, например, димедрола) связано с их блокирующим влиянием на центральные гистаминовые рецепторы.

Другие представителиПравить

  • Ацетилхолин — осуществляет нервно-мышечную передачу, а также основной нейромедиатор в парасимпатической нервной системе, единственное среди нейромедиаторов производное холина[1][2].
  • Анандамид — является нейротрансмиттером и нейрорегулятором, который играет роль в механизмах происхождения боли, депрессии, аппетита, памяти, репродуктивной функции. Он также повышает устойчивость сердца к аритмогенному действию ишемии и реперфузии.
  • АТФ (Аденозинтрифосфат) — роль как нейромедиатора не ясна.
  • Вазоактивный интестинальный пептид (VIP) — роль как нейромедиатора не ясна.
  • Таурин — играет роль нейромедиаторной аминокислоты, тормозящей синаптическую передачу, обладает противосудорожной активностью, оказывает также кардиотропное действие.
  • Триптамин — предполагается, что триптамин играет роль нейромедиатора и нейротрансмитера в головном мозге млекопитающих.
  • Эндоканнабиноиды — в роли межклеточных сигнализаторов они похожи на известные трансмиттеры моноамины, такие как ацетилхолин и дофамин, эндоканнабиноиды отличаются во многих отношениях от них — например, они используют ретроградную сигнализацию (выделяются постсинаптической мембраной и воздействуют на пресинаптическую). Кроме того, эндоканнабиноиды являются липофильными молекулами, которые не растворяются в воде. Они не хранятся в пузырьках, а существуют в качестве неотъемлемой компоненты мембранного бислоя, который входит в состав клетки. Предположительно, они синтезируются «по требованию», а не хранятся для дальнейшего использования.
  • N-ацетиласпартилглутамат (NAAG) — является третьим по распространённости нейромедиатором в нервной системе млекопитающих. Имеет все характерные свойства нейромедиаторов: концентрируется в нейронах и синаптических пузырьках, выделяется из аксональных окончаний под воздействием кальция после инициации потенциала действия, подлежит внеклеточному гидролизу пептидазами. Действует как агонист II группы метаботропных глутаматных рецепторов, в особенности рецептора mGluR3, и расщепляется в синаптической щели NAAG-пептидазами (GCPII, GCPIII) на исходные вещества: NAA и глутамат.
  • Кроме того, нейромедиаторная (или нейромодуляторная) роль показана для некоторых производных жирных кислот (эйкозаноидов и арахидоновой кислоты), некоторых пуринов и пиримидинов (например, аденина), а также АТФ[3].

Участие НМ в передаче нервного импульсаПравить

Участие НМ в передаче нервного импульса представляется следующим образом. Специализированный для секреции НМ участок пресинаптической клетки имеет особую наружную так называемую секреторную мембрану, которая при возбуждении пресинаптической клетки формирует мембранный пузырек, содержащий НМ. Содержимое пузырька изливается затем в синаптическую щель, диффундирует к постсинаптической мембране, где взаимодействует с ее специфическими рецепторами. При изучении действия НМ на рецепторы периферических органов и ЦНС выявлены различные типы рецепторов к одному и тому же НМ (м-, н-холинорецепторы, α-, β-адренорецепторы и др.). Их разделение основано на особенностях биохимических реакций, протекающих в системе НМ — рецептор. Например, в м-рецепторах реакция носит мускариноподобный характер (они не чувствительны к яду кураре), в н-рецепторах — никотиноподобный (чувствительны к яду кураре). Взаимодействие медиаторов с α-рецепторами вызывает эффект возбуждения (сужение сосудов, сокращение матки и т.д.): с β-рецепторами — тормозные эффекты (расширение сосудов, расслабление бронхов). Вместе с тем α- и β-рецепторы, расположенные в различных органах, могут по-разному реагировать на НМ. В зависимости от характера взаимодействия α- и β-рецепторов с различными НМ эти рецепторы соответственно разделяют на α1-, α2-, β1- и β2-адренорецепторы.[4]

Нейромедиаторы являются, как и гормоны первичными посредниками, но их высвобождение и механизм действия в химических синапсах сильно отличается от такового у гормонов. В пресинаптической клетке везикулы, содержащие НМ, высвобождают его локально в очень маленький объём синаптической щели. Высвобожденный НМ затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические мембраны (0,1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быструю передачу сигнала между нейронами или между нейроном и мышцей.

Недостаток какого-либо из нейромедиаторов может вызывать разнообразные нарушения, например, различные виды депрессии. Также считается[5], что формирование зависимости от наркотиков и табака связано с тем, что при употреблении этих веществ задействуются механизмы производства нейромедиатора серотонина, а также других нейромедиаторов, блокирующих (вытесняющих) аналогичные естественные механизмы.

Пример работы НМ фоторецепторов палочек и колбочекПравить

  Основная статья: Мембранный потенциал

Палочки составляют ~97 % фоторецепторов сетчатки глаза мыши, колбочки — остальное (Картер-Доусон и LaVail, 1979). Фоторецепторные клетки мыши подобны фоторецепторам примата в физических измерениях (Стол 2 и иллюстрация 2). Внешняя доля мембраны — приблизительно 1.4мкм в диаметре и 24мкм в длине для палочек, и, соответственно, приблизительно 1.2мкм. и 13мкм. для колбочек. Эти величины являются значительно меньшими, чем у фоторецепторов земноводных (иллюстрация 1), которые объясняют давнюю пользу физиологов для исследований последних.

 
Таблица 2.[6]
  • Таблица 2. Физические измерения внешней доли мембраны палочек мыши и колбочек Саламандра, а фоторецепторы примата включены для сравнения.

Палочки и колбочки имеют четыре первичных структурных/функциональных областей: внешняя доля мембраны, внутренняя доля мембраны, тело ячейки и синаптический терминал. Внешняя доля мембраны связана с внутренней долей через тонкую соединительную ресницу. Внешняя доля является заполненной плотным прозрачным веществом мембранных дисков (иллюстрации 2 и 3), разделённой промежутками в приблизительно в 28 нм. Диски несут визуальный пигмент опсин (разновидность фотопигментов «rhod-opsin» в палочках и разновидность фотопигментов колбочки «con-opsin» в колбочках)[7] и других компонентах трансдукции или как трансмембранные или периферийные мембранные белки (иллюстрация 3). Зрительный фотопигмент — самый насыщенный белок во внешней доле (мембране). Важность визуального пигмента (НМ) как главного структурного компонента демонстрируется у мыши rhodopsin-нокаута, в палочке, где внешние доли мембраны не в состоянии сформироваться (Humphries и др., 1997; Лем и др., 1999). Фоторецепторы палочки у этой мыши — выродившийся сопровождаемый представитель колбочек. Упаковочная плотность молекул пигмента на дисках мембраны необычно однородна поперек различных позвоночных разновидностей, содержашихся на площади ~25000 мм², соответствуя концентрации ~ 3mM (Harosi, 1975). Общее количество молекул пигмента во внешней доле может таким образом быть вычислено примерно от ее объема конверта. Плотный стек дисков очень увеличивает вероятность захвата фотона. Интересное различие между палочками и колбочками — это то, что диски палочки (за исключением возникающих дисков в основе внешней доли мембраны) полностью усвоены и поэтому физически отделены от плазменной мембраны, тогда как диски колбочки остаются свёрнутыми плазменной мембраной. Открытые диски колбочки предлагают намного большую поверхностную область для быстрых потоков веществ между внешностью клетки и интерьером, по типу передачи хромофора для регенерации фотопигмента и быстрой динамики кальция в течение световой лёгкой адаптации или возбуждения волны сигнала — мембранного потенциала.

 
Рис.3. Молекула родопсина при восприятии луча света в процессе создания биохимического сигнала.[6]
 
Рис.2.[6]
  • Рис. 2. Низкое усиление изображений палочек и колбочек обезьяны с расширением внешних дисков (мембран) доли.
  • Рис.3. Схематическая диаграмма rhodopsina во внешних дисках (мембран) доли.

Внутренняя доля фоторецепторов содержит endoplasmic сеточку и аппарат Golgi. Это также упаковано mitochondria, близко, смежно с внешней долей (иллюстрации 2 и 3), чтобы обеспечить высокий спрос на метаболическую энергию, связанную с фототрансдукцией (передача сигнала). Все белки, предназначенные для внешней доли мембраны палочек и колбочек, должны пройти через узкую зону соединительной ресницы между внешним и внутренними долями.

Синаптический терминал передает световой сигнал к нейронам второго заказа в сетчатке: к биполярным и горизонтальным ячейкм. В темноте есть устойчивый внутренний поток («темный поток») через проводимость катиона на мембране внешней доли (Hagins и др., 1970), деполяризуя палочку или колбочку и поддерживая устойчивый синаптический выпуск глутамата. Свет закрывает эту проводимость катиона («светочувствительная» проводимость, состоя из cGMP-gated каналов) служит, чтобы остановить темный поток и произвести мембранную гиперполяризацию как ответ. Эта гиперполяризация уменьшает или заканчивает тёмный глутаматный выпуск. Сигнал далее обрабатывается другими нейронами в сетчатке прежде, чем передаётся в высшие отделы зрительных центров в мозге.

См. такжеПравить

ПримечанияПравить

ЛитератураПравить