Участник:Миг/Зрительная система
.Зрительная система — оптикобиологическая бинокулярная система, эволюционно возникшая у животных и способная воспринимать излучение видимого спектра света, создавая объёмное, цветное изображение в виде образа предмета (через ощущения посредством сенсорно-рецепторного воздействия), его положение при ориентации в пространстве. Зрительная система обеспечивает функцию зрения.
Зрительная система у млекопитающих включает следующие анатомические образования: глаз, в частности хрусталик, сетчатка (вспомогательные структуры: мышцы глаза, век и слёзный аппарат), зрительные нервы, хиазма, оптический тракт, латеральное коленчатое тело промежуточного мозга, зрительная радиация, зрительная кора.
ГлазаПравить
У животных и человека органами зрения являются глаза, фасеточные глаза насекомых имеют совершенно иное строение. Существуют и другие виды зрения, например, возможен особый род зрения — не оптическая, ультразвуковая локация летучих мышей, позволяющая им заметить мельчайшее насекомое.
Эволюция зрительной системыПравить
Даже простейшие беспозвоночные животные обладают способностью к фототропизму благодаря своему, пусть крайне примитивному зрению. По мере совершенствования зрительного аппарата количество и сложность глаз возрастает. У беспозвоночных часто присутствует множество фасеточных глаз. У скорпиона, например, 3-6 пар глаз, у щитня — 3.
Медузы обладают сложным зрительным аппаратом, подчас десятками «глаз», расположенных по перифприи мантии. Часть из них действительно «глаза», и позволяют строить изображение окружающего мира; другая часть — светочувствительные клетки в специальных фоторецепторных ямках, позволяют медуз отличать тёмное и светлое, свет и тьму в зоне действия рецептора.
Глаз человека состоит из глазного яблока и зрительного нерва с его оболочками. У человека и позвоночных имеется по два глаза, расположенных в глазных впадинах черепа.
Схема эмбрионального развития и строения глаза головоногих моллюсков (вверху) и позвоночных. 1 — сетчатка, 2 — пигментная оболочка, 3 — роговица, 4 — радужка, 5 — хрусталик, 6 — ресничное (эпителиальное) тело, 7 — сосудистая оболочка, 8 — склера, 9 — зрительный нерв, 10 — покровная эктодерма, 11 — головной мозг. На основе совершенно различных морфогенетических процессов формируются подобные органы. Именно таким путем может быть осуществлено конвергентное развитие признаков у филогенетически неродственных организмов. В основе событий, последовательно строящих данную структуру, лежит, очевидно, генетически запрограммированный план развития. Последовательное развертывание этих событий регулируется сложным и точно настроенным генетическим механизмом, начало которому может положить одноразовая макромутация Гольдшмидта.[1]
Зрительная система у разных видов живых существПравить
Учёные предполагают, что исходной формой нервной системы всех животных была диффузная. На её основе в ходе эволюции вторичноротых сформировалась «спинная» трубчатая нервная система, это спинной и головной мозг. В ходе эволюции первичноротых, скажем, насекомых, были узловая — брюшная нервная цепочка с окологлоточными ганглиями в последствии — головным мозгом этих животных. [2]
БеспозвоночныеПравить
У видов беспозвоночных встречаются весьма разнообразные зрительные системы. По типу строения и зрительным возможностям глаза и глазков — у одноклеточных и многоклеточных. Имеются прямые и обращённые (инвертированные), паренхимные и эпителиальные, простые и сложные зрительные системы.
Членистоногие часто имеют несколько простых глаз, например, непарный простой глазок — науплиальный глаз ракообразных или пару сложных фасеточных глаз. Некоторые виды членистоногих имеют и простые, и сложные глаза. Например, осы имеют два сложных глаза и три простых глаза (глазка). Скорпионы имеют 3—6 пар глаз (1 пара — главные, или медиальные, остальные — боковые). щитня имеет 3 пары. Эволюция фасеточных глаз произошла за счёт слияния простых глазков. Близкие по строению к простому глазу глаза мечехвостов и скорпионов, скорее всего, возникли из сложных глаз трилобитообразных предков при слиянии их элементов. [3]
ПростейшиеПравить
Некоторые простейшие имеют слабодифференцированные органоиды светового восприятия (например, стигма у эвглены зелёной).
НасекомыеПравить
Глаза насекомых имеют фасеточное стpоение. Разные виды по-разному воспринимают цвета, но в целом большинство насекомых хорошо различают не только лучи спектра, видимые человеком, но и ближний ультрафиолет. Это зависит, помимо генетических факторов (строение рецепторов), и от меньшего поглощения УФ-света — из-за меньшего его длины пути в оптической системе глаза. Например, пчелы видят ультрафиолетовый рисунок на цветке.
ПозвоночныеПравить
Структура рецепторов рептилий, птиц и некоторых рыбПравить
Установлено, что рептилии, птицы и некоторые рыбы имеют разные области ощущаемого оптического излучения. Одни лучше воспринимают ближний ультрафиолет (300—380нм) и синюю области спектра, у других видимая область сдвинута в красную и инфракрасную часть спектра (650 - 850нм).
Зрительный аппарат птиц обладает особенностями, не сохранившимися в зрении человека. Так, в рецепторах птиц имеются микросферы, содержащие липиды и каротиноиды. Считается, что эти микросферы — бесцветные, а также окрашенные в жёлтый или оранжевый цвет — выполняют функцию специфических светофильтров, формирующих «кривую видности».
У многих птиц их бинокулярное зрение практически отсутствует из-за близкого расположения глаз, что не даёт такого угла разворота зрительных осей глаз при малых расстояниях нахождения предмета. Эффект стереоскопического зрения и у человека с увеличением расстояния рассматрваемого объекта умеьшается и равен около 10-15 метрам. Зато у птиц большая дальнозоркость зрительной системы.
Зрение млекопитающихПравить
Полагают, что предки млекопитающих — мелкие грызуны — вели ночной образ жизни и в их органе зрения получило развитие сумеречное зрение (с помощью рецепторов — палочек)
Позже, у приматов (и человека) другая мутация вызвала появление ещё одного типа цветовых рецепторов - колбочек. Это было вызвано расширением экологической ниши млекопитающих, переходом части видов к дневному образу жизни. Мутация была вызвана появлением изменённой копии гена, отвечающего за восприятие средней, зеленочувствительной области спектра. Она обеспечила лучшее распознавание объектов «дневного мира» — плодов, цветов, листьев.
Ниже более подробно рассмотрена структура зрения человека.
Стереоскопическое зрениеПравить
У многих видов, образ жизни которых требует хорошей оценки расстояния до объекта, глаза смотрят скорее вперёд, нежели в стороны. Так, у горных баранов, леопардов, обезьян обеспечивается лучшее стереоскопическое зрение, которое помогает оценивать расстояние перед прыжком. Человек также имеет хорошее стереоскопическое зрение (см. ниже, раздел Бинокулярное и стереоскопическое зрение).
Альтернативный механизм оценки расстояния до объекта реализован у некоторых птиц, глаза которых расположены по разным сторонам головы, а поле объёмного зрения невелико. Так, куры совершают постоянные колебательные движения головой, при этом изображение на сетчатке быстро смещается, обратно пропорционально расстоянию до объекта. Мозг обрабатывает сигнал, что позволяет поймать мелкую добычу клювом с высокой точностью.
Глаза каждого человека кажутся идентичными, но всё же несколько различны, поэтому выделяют ведущий и ведомый глаз. Определение ведущего глаза важно для охотников, видеооператоров и лиц других профессий. Если посмотреть через отверстие в непрозрачном экране (дырочка в листе бумаги на расстоянии 20-30 см.) на отдалённый предмет, а затем, не смещая голову, поочередно закрыть правый и левый глаз, то для ведущего глаза изображение не сместится.
Физиология зрения человекаПравить
Бинокулярное и стереоскопическое зрениеПравить
Бинокулярное зрение у человека, как и у других млекопитающих, а также птиц и рыб, обеспечивается наличием двух глаз, информация от которых обрабатывается сначала раздельно и параллельно, а затем синтезируется в мозгу в зрительный образ. У далеких филогенетических предшественников человека глаза были расположены латерально, их зрительные поля не перекрывались и каждый глаз был связан только с противоположным полушарием мозга — контралатерально. В процессе эволюции у некоторых позвоночных, в том числе и у предков человека в связи с приобретением стереоскопического зрения, глаза переместились вперед. Это привело к перекрытию левого и правого зрительных полей и к появлению новых ипсилатеральных связей: левый глаз — левое полушарие, правый глаз — правое. Таким образом появилась возможность иметь в одном месте зрительную информацию от левого и правого глаза, для их сопоставления и измерения глубины.
Ипсилатеральные связи эволюционно более молодые, чем контралатеральные. В ходе развития стереоскопичности зрения по мере перехода от животных с латерально направленными зрительными осями к животным с фронтальной ориентацией глаз доля ипси-волокон растет (таблица).[4]
Вид животного | Отношение количества неперекрестных к числу перекрестных волокон |
---|---|
Овца | 1 : 9 |
Лошадь | 1 : 8 |
Собака | 1 : 4.5 |
Опоссум | 1 : 4 |
Морская свинка | 1 : 3 |
Кошка | 1 : 3 |
Хорёк | 1 : 3 |
Макак | 1 : 1.5 |
Человек | 1 : 2; 1 : 1.5; 1 : 1* |
- — данные разных авторов
Большинство особенностей бинокулярного зрения человека обусловлено характеристиками нейронов и нейронных связей. Методами нейрофизиологии показано, что декодировать глубину изображения, заданную на сетчатках набором диспаратностей, начинают бинокулярные нейроны первичной зрительной коры. Было показано, что самое важное требование для осуществления стереоскопического зрения — это различия в образах на сетчатке двух глаз[5]
Благодаря тому, что поля зрения обоих глаз человека и высших приматов в значительной мере пересекаются, человек способен лучше, чем многие млекопитающие, определять внешний вид и расстояние (тут помогает также механизм аккомодации) до близких предметов в основном за счёт эффекта стереоскопичности зрения. Стереоскопический эффект сохраняется на дистанции приблизительно 0.1-100 метров. У человека пространственно-зрительные способности и объемное воображение тесно связаны со стереоскопией и ипси-связями.
Свойства зренияПравить
Световая чувствительность человеческого глазаПравить
Световая чувствительность оценивается величиной порога светового раздражителя.
Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Однако световая чувствительность зрения многих ночных животных (совы, грызуны) гораздо выше.
Максимальная световая чувствительность палочек глаза достигается после достаточно длительной темновой адаптации. Её определяют под действием светового потока в телесном угле 50° при длине волны 500 нм. В этих условиях пороговая энергия света составляет величину порядка 10−9 эрг/с, что соответствует потоку нескольких квантов оптического диапазона в секунду через зрачок.
Максимум чувствительности при дневном освещении лежит при 555-556 нм, а при слабом вечернем/ночном смещается в сторону фиолетового края видимого спектра и равен 510 нм (в течение суток колеблется в пределах 500…560nm). Объясняется это (зависимость зрения человека от условий освещённости при восприятии им разноцветных объектов, соотношение их кажущейся яркости – эффект Пуркинье) двумя типами светочувствительных элементов глаза – при ярком свете зрение осуществляется преимущественно колбочками, а при слабом задействуются предпочтительно только палочки.
Воспринимаемый диапазон яркостей, которые способен воспринять вся система зрения, лежит в пределах: от 10−6 кд*м² для полностью адаптированного к темноте — до 106 кд*м², для полностью адаптированного глаза к свету — на 12 порядков яркости![6].[7] Механизм такого широкого диапазона чувствительности кроется в разложении и восстановлении фоточувствительных пигментов в фоторецепторах сетчатки — колбочках и палочках.
Чувствительность глаза зависит от полноты адаптации, от интенсивности источника света, длины волны и угловых размеров источника, а также от времени действия раздражителя. Чувствительность глаза понижается с возрастом из-за ухудшения оптических свойств склеры и зрачка, а также рецепторного звена восприятия.
Цветовое зрениеПравить
В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высокочувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение, лежащие в фокальной поверхности сетчатки, а также недавно открытые фоторецепторы сетчатки в ганглиозном слое ipRGB, связанные с палочками, колбочками и мозгом, светочувствительные к синим лучам с пигментом меланопсином, управляющие восприятием цвета и света вместе с мозгом, например, колбочками и палочкасми и др.
В сетчатке глаза человека содержится три вида колбочек, максимум чувствительности которых приходится на красный, зелёный и синий участок спектра, что соответствует трем «основным» цветам. Они обеспечивают восприятие и распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что вызывает эффект метамерии. Очень сильный свет возбуждает все 3 типа колбочек, и потому воспринимается, как слепящее излучение белого цвета (прямое солнечное попадание в глаз или электродуговая сварка).
Цвет — один из множества световых и других раздражителей окружающей среды, воспринимаемых зрительной системой. Т.е. самым информативным участком спектра является видимый. И несмотря на то, что он очень узок — видимая область занимает участок всего лишь от 380 нм (или 0,38 миллионной доли метра) до 780 нанометров, — природа вынуждена была использовать его максимально полно. Для этого она разукрасила его всеми цветами радуги.
Несмотря на широко распространенное убеждение, что цветовое зрение — редкость у млекопитающих, большинство которых якобы видит только оттенки серого, судя по накапливающимся фактам, многие виды, включая домашних кошек и собак, все же, хотя бы в некоторой степени, различают и цвета. Цветовое зрение, вероятно, наиболее развито у приматов, но известно также у лошади, жирафа, виргинского опоссума, нескольких видов белок и многих других зверей.[8]
Острота зренияПравить
Способность различных людей видеть большие или меньшие детали предмета с одного и того же расстояния при одинаковой форме глазного яблока и одинаковой преломляющей силе диоптрической глазной системы обусловливается различием в расстоянии между палочками и колбочками сетчатки и называется остротой зрения.
БинокулярностьПравить
Рассматривая предмет обоими глазами, мы видим его только тогда одиночным, когда оси зрения глаз образуют такой угол сходимости (конвергенцию), при котором симметричные отчётливые изображения на сетчатках получаются в определённых соответственных местах чувствительного жёлтого пятна (fovea centralis). Благодаря такому бинокулярному зрению, мы не только судим об относительном положении и расстоянии предметов, но и воспринимаем впечатления рельефа и объёма.
Основными характеристиками бинокулярного зрения являются наличие элементарного бинокулярного, глубинного и стереоскопического зрения, острота стереозрения и фузионные резервы.
Наличие элементарного бинокулярного зрения проверяется посредством разбиения некоторого изображения на фрагменты, часть которых предъявляется левому, а часть — правому глазу. Наблюдатель обладает элементарным бинокулярным зрением, если он способен составить из фрагментов единое исходное изображение.
Наличие глубинного зрения проверяется путем предъявления силуэтных, а стереоскопического — случайно-точечных стереограмм, которые должны вызывать у наблюдателя специфическое переживание глубины, отличающееся от впечатления пространственности, основанного на монокулярных признаках.
Острота стереозрения — это величина, обратная порогу стереоскопического восприятия. Порог стереоскопического восприятия — это минимальная обнаруживаемая диспаратность (угловое смещение) между частями стереограммы. Для его измерения используется принцип, который заключается в следующем. Три пары фигур предъявляются раздельно левому и правому глазу наблюдателя. В одной из пар положение фигур совпадает, в двух других одна из фигур смещена по горизонтали на определенное расстояние. Испытуемого просят указать фигуры, расположенные в порядке возрастания относительного расстояния. Если фигуры указаны в правильной последовательности, то уровень теста увеличивается (диспаратность уменьшается), если нет — диспаратность увеличивается.
Фузионные резервы — условия, при которых существует возможность моторной фузии стереограммы. Фузионные резервы определяются максимальной диспаратностью между частями стереограммы, при которых она еще воспринимается в качестве объемного изображения. Для измерения фузионных резервов используется принцип, обратный применяемому при исследовании остроты стереозрения. Например, испытуемого просят соединить (сфузировать) в одно изображение две вертикальных полосы, одна из которых видна левому, а другая — правому глазу. Экспериментатор при этом начинает медленно разводить полосы сначала при конвергентной, а затем при дивергентной диспаратности. Изображение начинает «разваливаться» при значении диспаратности, характеризующей фузионный резерв наблюдателя.
Бинокулярость может нарушаться при косоглазии и некоторых других заболеваниях глаз. При сильной усталости может наблюдаться временное косоглазие, вызванное отключением ведомого глаза.
- См. также Бинокуляр, Стереоскоп.
Контрастная чувствительностьПравить
Контрастная чувствительность — способность человека видеть обьекты, слабо отличающиеся по яркости от фона. Оценка контрастной чувствительности производится по синусоидальным решеткам. Повышение порога контрастной чувствительности может быть признаком ряда глазных заболеваний, в связи с чем его исследование может применяться в диагностике.
Адаптация зренияПравить
Приведенные выше свойства зрения тесно связаны со способностью глаза к адаптации. Адаптация происходит к изменениям освещённости (темновая адаптация), цветовой характеристики освещения (способность воспринимать белые предметы белыми даже при значительном изменении спектра падающего света, см. также Баланс белого).
Адаптация проявляется также в способности зрения частично компенсировать дефекты самого зрительного аппарата (оптические дефекты хрусталика, дефекты сетчатки, скотомы и пр.)
Дефекты зренияПравить
Самый массовый недостаток — нечёткая, неясная видимость близких или удалённых предметов.
Дефекты хрусталикаПравить
ДальнозоркостьПравить
Видимость предметов меняется с возрастом человека: десятилетний ребёнок видит хорошо предмет не ближе 7 см, в 45 лет — 33 см, а в 70 лет необходимы очки для рассматривания близких предметов. Так в течение жизни падает способность глаза менять свою форму с помощью глазных мышц, развивается дальнозоркость.
БлизорукостьПравить
Другой дефект зрения — близорукость (миопия). Развивается близорукость от длительного напряжения зрения, связанного с недостатком освещения. Установлено, что в младших классах близоруких немного, но их становится больше в средних и старших классах. Чаще всего близорукость развивается к 16—18 годам.
Близорукость почти никогда не развивается у людей, ведущих образ жизни, требующий наблюдения отдалённых предметов (моряки и др.).
Близорукость и дальнозоркость происходит из-за нерасслабленых глазных мышц. При близорукости мышцы напряжены так, что глаз принимает вытянутую овальную форму и человек не видит или плохо видит в даль. При дальнозоркости всё наоборот: мышцы глаза сжались так, что глаз принял форму овала по вертикали и фокус находится за сечаткой глаза, в следствии человек не видит вблизи. Принято считать, что слабая близорукость это некая болезнь или отклонение от нормы. Но когда человек видит много ненужных объектов и их очертаний в их точном исполнении, лишь притупляющих ум, разум принимает решение сглаживать изображение, смягчая картинку. Таким образом уменьшается поток маловажной для мозга информации, а значит и энергозатраты человека для его выживания. Слабая близорукость таким образом оправдана с точки зрения выживания. Такое отклонение от нормы можно считать удовлетворительным и его можно не считать некой болезнью.
АстигматизмПравить
Данный дефект зрения связан с нарушением формы глаза из-за неравномерного напряжения глазных мышц. Некоторые мышцы напряжены сильнее, чем все остальные, из-за этого глаз принимает неправильную форму и лучи не попадают на жёлтое пятно или попадают не все. Этот дефект исправляется также специальными упражнениями: http://www.see.active.by/
Дефекты сетчаткиПравить
ДальтонизмПравить
Дальтони́зм, цветовая слепота — наследственная, реже приобретённая особенность зрения, выражающаяся в неспособности различать один или несколько цветов. Названа в честь Джона Дальтона, который сам страдал дальтонизмом и который впервые описал один из видов цветовой слепоты на основании собственных ощущений, в 1794 году.
Если в сетчатке глаза отсутствуют или частично вырождены какие либо из фоточувствительных пигментов, то у человека наблюдается цветоаномалия выраженная в неправильной цветопередаче воспринимаемых глазом цветов.
Люди с нормальным цветным зрением имеют в фоторецепторах все три пигмента - разновидностей опсина и в зависимости от вида и структуры пигмента опсина их молекулы максимально чувствительны к длинным длинам волны света (красному цвету), средним длинам волны света (зеленому цвету) или коротким длинам волны света (синему цвету). Откуда, колбочки с различной чувствительностью к спектральным лучам света в зонах (S, M., L — синяя, зелёная, красная) (см. рис. 13) в зависимсти от длины волны и последовательности троп возможности прохождения в мозг сигнала, безусловно, основа цветного восприятия окружающей среды и создания нашего визуального оптического изображения.
В силу морфологических отличий, описанных выше, существуют два основных типа фоторецептора палочек и колбочек, находящиеся в позвоночной сетчатке. Палочки — фоторецепторы, которые содержат зрительный пигмент — родопсин, чувствительный к синему-зеленому цвету с пиковой чувствительностью, равной длине волны света 498 нм. Палочки — очень чувствительные фоторецепторы и используются для видения в условичх сумеречного (скотопического) зрения [9]. В силу ретиномоторной реакции фоторецепторов при достижении освещения 498 нм родопсин обесцвечивается и палочки уходят в зону, где они не принимают дневной свет. Т.е. палочки в цветном зрения не участвуют. Колбочки же содержат пигменты - опсины, и в зависимости от вида и структуры опсина их молекулы максимально чувствительны к длинным длинам волны света (красному цвету), средним длинам волны света (зеленому цвету) или коротким длинам волны света (синему цвету). Колбочки с различной чувствительностью (см. рис. 13) от длины волны и последовательностью троп возможности прохождения в мозг, конечно, основа цветного восприятия окружающей среды и создания нашего визуального оптического изображения. (Здесь особое место занимают колбочки-S)
Сетчатки приматов и человека все еще содержат типы колбочек, которые выглядят по существу аналогично морфологически, но здесь одновременно с последними анатомическими методами исследования замечено, что по крайней мере, наблюдается различие между колбочками с короткой длиной волной и двумя колбочками с более длинными длинами волны. Специализированные гистохимические методы (Марк и Sperling, 1977), исследования с умелым подбором краски (DeMonasterio и др., 1981) или использование определённых антител для визуальных пигментов (Szel и др., 1988), позволили идентификацию различных спектральных (цветовых) типов колбочек теперь наиболее относящихся к разновидностям млекопитающих. В антителах сетчатки примата противоположные визуальные пигменты окрашивают внешние доли L/M-колбочек вместе, в то время как Булочек-S-колбочек окрашивают самостоятельно.
В вышеупомянутом антивизуальном антителе пигмента запятнанная ткань, Булочки-колбочки-S выделяется в виде колбочек, которые не запятнаны, потому что антитело признает только колбочки L и М (оппонентно). Т.е. фотопигмент окрашивает в виде коричневых запятнанных профилей колбочек типов - L-и М, в то время как незапятнанные профили, окруженные синими кругами - это Булочки или колбочки-S (Wikler и Rakic, 1990). Т.о. не может быть речи о причастности родопсина (палочек) в цветном зрении (трихроматизма).
В этой связи аномалии цветного зрения как дальтонизм связаны с отсутствием или нарушением работы фототрансдукции сигнала S,M,L пигментов колбочек того или иного цвета. Это прежде всего пигментов йодопсинов, кон-опсинов, меланопсина (см. опсины), ответственных за красно-зелёное восприятие цветов, а также сине-жёлтых цветов.
Известны три частных случая цветоаномалии дальтонизма.
1.Отсутствует пигмент (сенсибилизатор), реагирующий на длинноволновую (жёлто-красную) область спектра-L, - разновидность эритролаб. Этот дефект называют дальтонизмом 1-го рода — протанопия.
2.Отсутствует пигмент реагирующий в основном на жёлто-зелёную область спектра-M — хлоролаб. Такое цветовосприятие свойственно при дальтонизме 2-го рода - дейтеранопия.
3.Отсутствует пигмент, реагирующий в основном на фиолето-синюю область спектра-S — разновидность йодопсина (Булочки-колбочки-S) - так называемая "куриная слепота". При этом помимо искажения цветопередачи у человека отсутствует сумеречное зрение. В данном случае также нарушена функция работы фоторецепторов палочек, содержащих фотопигмент родопсин [11] реагирующий на фиолетово-синий спект света. Этот случай и есть дальтонизм 3-го рода - тританопия (см.Цветное зрение у птиц, Лаборатория Р.Е.Марка, Участник:Миг/Тропы булочек (S-cone)).
Редко встречается парная, или даже полная цветовая слепота.
СкотомаПравить
Скотома — (от греч. skotos — темнота) — пятнообразный дефект в поле зрения глаза, вызванный заболеванием в сетчатке, болезнями зрительного нерва, глаукомой. Это участки (в пределах поля зрения), в которых зрение существенно ослаблено, или отсутствует.
Прочие дефектыПравить
КосоглазиеПравить
Способы улучшения зренияПравить
ПримечанияПравить
- ↑ http://vspu.ru/kafedra-filosofii-i-politologii/dopolnitelnje%20materialj/mirovozzrenie-duhovnost-cennosti/goryachev-a-p-sovremennaya-teoriya-zreniya-mify-i-realnost
- ↑ «Общий курс физиологии человека и животных» (под редакцией профессора А. Д. Ноздрачева, книга первая).М., «Высшая школа», 1991
- ↑ http://evolution.powernet.ru/library/evolcns.html
- ↑ Блинков С. М., Глезер И. И. (1964) Мозг человека в цифрах и таблицах. Л., 180 с.
- ↑ Bishop P. O. (1981) Neural mechanisms for binocular depth discrimination. In: Advances in Physiological Sciences. Sensory Functions (Eds. Grastian E., Molnar P.), v. 16, p. 441—449.
- ↑ Deane B. Judd and Gunter Wyszecki, Color in business? science and industry, New York/London/Sydney/Toronto, 1975.
- ↑ Д. Джадд, Г. Вышецки, Цвет в науке и технике, Изд. «мир», Москва 1978 г., стр 397.
- ↑ http://www.krugosvet.ru/enc/nauka_i_tehnika/biologiya/MLEKOPITAYUSHCHIE.html#1000247-L-111
- ↑ http://www.library.biophys.msu.ru/PDF/3353.pdf М. А. Островский ФОТОБИОЛОГИЧЕСКИЙ ПАРАДОКС ЗРЕНИЯ
- ↑ http://webvision.med.utah.edu/S-cone.html
- ↑ http://www.library.biophys.msu.ru/PDF/3353.pdf М. А. Островский ФОТОБИОЛОГИЧЕСКИЙ ПАРАДОКС ЗРЕНИЯ
См. такжеПравить
ЛитератураПравить
- А. Нагель «Аномалии, рефракции и аккомодации глаза» (1881, перевод с немецкого д-ра Добровольского);
- Longmore, «Руководство к исследованию зрения для военных врачей» (переработано Лаврентьевым, 1894);
- А. Imbert, «Les anomalies de la vision» (1889).
СсылкиПравить
Материалы от РАН
Web colors | black | silver | grey | white | red | maroon | purple | fuchsia | green | lime | olive | yellow | orange | blue | navy | teal | aqua |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|