Монооксид углерода

(перенаправлено с «Угарный газ»)

Монооксид углерода (лат. Carbon monoxide; другие названия — уга́рный газ, окись углерода, моноокись углерода, оксид углерода (II)) — бесцветный газ без вкуса и запаха. Химическая формула CO.

Регистрационные номера:

Классификация ООН

Строение молекулыПравить

Молекула CO, так же, как и изоэлектронная ей молекула азота, имеет тройную связь. Так как эти молекулы сходны по строению, то и свойства их также схожи — очень низкие температуры плавления и кипения, близкие значения стандартных энтропий и т. п.

В рамках метода валентных связей строение молекулы CO можно описать формулой :C≡O:, причём третья связь образована по донорно-акцепторному механизму, где углерод является акцептором электронной пары, а кислород — донором.

Согласно методу молекулярных орбиталей электронная конфигурация невозбуждённой молекулы CO σ2Oσ2zπ4x, yσ2C. Тройная связь образована σ—связью, образованной за счёт σz электронной пары, а электроны дважды вырожденного уровня πx, y соответствуют двум σ—связям. Электроны на несвязывающих σC—орбитали и σO—орбитали соответствуют двум электронным парам, одна из которых локализована у атома углерода, другая — у атома кислорода.

Благодаря наличию тройной связи молекула CO весьма прочна (энергия диссоциации 1069 кДж/моль, или 256 ккал/моль, что больше, чем у любых других двухатомных молекул) и имеет малое межъядерное расстояние (dC≡O=0,1128 нм или 1,13Å).

Молекула слабо поляризована, электрический момент её диполя μ = 0,04·10-29Кл·м (направление дипольного момента O-→C+). Ионизационный потенциал 14,0 в, силовая константа связи k = 18,6.

История открытияПравить

Монооксид углерода был впервые получен французским химиком Жаком де Лассоном в 1776 при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем. То, что в состав этого газа входит углерод и кислород, выяснил в 1800 английский химик Вильям Крукшэнк. Моноксид углерода в атмосфере Земли впервые был обнаружен бельгийским ученым М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК спектре Солнца.

Монооксид углерода в атмосфере ЗемлиПравить

 
Содержание CO в атмосфере Земли по данным MOPITT

Различают природные и антропогенные источники поступления атмосферу Земли. В естественных условиях, на поверхности Земли, CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров. Монооксид углерода образуется в почве как биологическим путём (выделение живыми организмами), так и небиологическим. Экспериментально доказано выделение монооксида углерода за счёт обычных в почвах фенольных соединений, содержащих группы OCH3 или OH в орто- или пара-положениях по отношению к первой гидроксильной группе.

Общий баланс продуцирования небиологического CO и его окисления микроорганизмами зависит от конкретных экологических условий, в первую очередь от влажности и занчения pH. Например, из аридных почв монооксид углерода выделяется непосредственно в атмосферу, создавая таким образом локальные максимумы концентрации этого газа.

В атмосфере СО является продуктом цепочек реакций с участием метана и других углеводородов (в первую очередь, изопрена).

Основным антропогенным источником CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Оксид углерода образуется при сгорании углеводородного топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (недостаточно кислорода для окисления CO в CO2). В прошлом значительную долю антропогенного поступления CO в атмосферу обеспечивал светильный газ, использовавшийся для освещения помещений в XIX веке. По составу он примерно соответствовал водяному газу, то есть содержал до 45 % монооксида углерода. В настоящее время в коммунальной сфере этот газ вытеснен гораздо менее токсичным природным газом (низшие представители гомологического ряда алканов — пропан и др.)

Поступление CO от природных и антропогенных источников примерно одинаково.

Монооксид углерода в атмосфере находится в быстром круговороте: среднее время его пребывания составляет около 0,1 года, окисляясь гидроксилом до диоксида углерода.

ПолучениеПравить

Промышленный способПравить

1. Образуется при горении углерода или соединений на его основе (например, бензина) в условиях недостатка кислорода:

2C + O2 → 2CO↑ (тепловой эффект этой реакции 22 кДж),

2. или при восстановлении диоксида углерода раскалённым углём:

CO2 + C ↔ 2CO↑ (ΔH=172 кДж, ΔS=176 Дж/К).

Эта реакция часто происходит при печной топке, когда слишком рано закрывают печную заслонку (пока окончательно не прогорели угли). Образующийся при этом монооксид углерода, вследствие своей ядовитости, вызывает физиологические расстройства («угар») и даже смерть (см. ниже), отсюда и одно из тривиальных названий — «угарный газ». Картина протекающих в печи реакций приведена на схеме.

Реакция восстановления диоксида углерода обратимая, влияние температуры на состояние равновесия этой реакции приведено на графике. Протекание реакции вправо обеспечивает энтропийный фактор, а влево — энтальпийный. При температуре ниже 400°C равновесие практически полностью сдвинуто влево, а при температуре выше 1000°C вправо (в сторону образования CO). При низких температурах скорость этой реакции очень мала, поэтому монооксид углерода при нормальных условиях вполне устойчив. Это равновесие носит специальное название равновесие Будуара.

3. Смеси монооксида углерода с другими веществами получают при пропускании воздуха, водяного пара и т. п. сквозь слой раскалённого кокса, каменного или бурого угля и т. п. (см. генераторный газ, водяной газ, смешанный газ, синтез-газ).

Лабораторный способПравить

1. Разложение жидкой муравьиной кислоты под действием горячей концентрированной серной кислоты, либо пропуская муравьиную кислоту над оксидом фосфора P2O5. Схема реакции:

HCOOH →(t, H2SO4) H2O + CO↑

Можно также обработать муравьиную кислоту хлорсульфоновой. Эта реакция идёт уже при обычной температуре по схеме:

HCOOH + ClSO3H → H2SO4 + HCl + CO↑.

2. Нагревание смеси щавелевой и концентрированной серной кислот. Реакция идёт по уравнению:

H2C2O4(t, H2SO4) CO↑ + CO2↑ + H2O.

Выделяющийся совместно с CO диоксид углерода можно удалить, пропустив смесь через баритовую воду.

3. Нагревание смеси гексацианоферрата (II) калия с концентрированной серной кислотой. Реакция идёт по уравнению:

K4[Fe(CN)6] + 6H2SO4 →(t) 2K2SO4 + FeSO4 + 3(NH4)2SO4 + 6CO↑.
 
Токсическое действие CO на человека

Физиологическое действие, токсичностьПравить

Угарный газ очень опасен, так как не имеет запаха и вызывает отравление и даже смерть. Признаками отравления служат головная боль, головокружение и потеря сознания. Токсическое действие монооксида углерода основано на том, что он связывается с гемоглобином крови прочнее, чем кислород (при этом образуется карбоксигемоглобин), таким образом, блокируя процессы транспортировки кислорода и клеточного дыхания. Предельно допустимая концентрация монооксида углерода в воздухе промышленных предприятий составляет 0,02 мг/л. Концентрация более 0,1% - смертельна. В выхлопе бензинового автомобиля допускается до 1,5-3%.

Опытами на молодых крысах выяснено, что 0,02-процентная концентрация CO в воздухе замедляет их рост и снижает активность по сравнению с контрольной группой. Интересно то, что крысы, живущие в атмосфере с повышенным содержанием CO, предпочитали воде и раствору глюкозы спиртовой раствор в качестве питья (в отличие от контрольной группы, особи в которой предпочитали воду).

Помощь при отравлении монооксидом углерода: пострадавшего следует вынести на свежий воздух, полезно также кратковременное вдыхание паров нашатырного спирта.

TLV (предельная пороговая концентрация, США): 25 ppm; 29 мг/м3 (как TWA - среднесменная концентрация, США) (ACGIH 1994-1995). MAС (максимальная допустимая концентрация, США): 30 ppm; 33 мг/м3; Беременность: B (вредный эффект вероятен даже на уровне MAK) (1993)

Защита от монооксида углеродаПравить

CO очень слабо поглощается активированным углём обычных фильтрующих противогазов, поэтому для защиты от него применяется специальный фильтрующий элемент (он может также подключаться дополнительно к основному) — гопкалитовый патрон. Гопкалит представляет собой катализатор, способствующий окислению CO в CO2 при нормальных температурах. Недостатком использования гопкалита является то, что при его применении приходится вдыхать нагретый в результате реакции воздух.

СвойстваПравить

Монооксид углерода представляет собой бесцветный газ без вкуса и запаха. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.

Свойства монооксида углерода
Молекулярная масса 28,01 а.е.м.
Температура плавления −205°C
Температура кипения −191,5°C
Растворимость Крайне слабо растворим в воде (2,3 мл CO/100 мл H2O при 20°C)
Плотность ρ 0,00125 г/см3 (при 0°C)
Стандартная энтальпия образования ΔH −110,52 кДж/моль (г) (при 298 К)
Стандартная энергия Гиббса образования ΔG −137,14 кДж/моль (г) (при 298 К)
Стандартная энтропия образования S 197,54 Дж/моль·K (г) (при 298 К)
Стандартная мольная теплоёмкость Cp 29,11 Дж/моль·K (г) (при 298 К)
Энтальпия плавления ΔHпл 0,838 кДж/моль
Энтальпия кипения ΔHкип 6,04 кДж/моль
Критическая температура tкрит −140,23°C
Критическое давление Pкрит 3,499 МПа
Критическая плотность ρкрит 0,301 г/см3

Основными типами химических реакций, в которых участвует монооксид углерода, являются реакции присоединения и окислительно-восстановительные реакции, в которых он проявляет восстановительные свойства.

При комнатных температурах CO малоактивен, его химическая активность значительно повышается при нагревании и в растворах (так, в растворах он восстанавливает соли Au, Pt, Pd и других до металлов уже при комнатной температуре. При нагревании восстанавливает и дургие металлы, например CO + CuO → Cu + CO2↑. Это широко используется в пирометаллургии. На реакции CO в растворе с хлоридом палладия основан способ качественного обнаружения CO, см. ниже).

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K2Cr2O7 — в присутствии солей ртути, КСlO3 — в присутствии OsO4. В общем, по своим восстановительным свойствам СО похож на молекулярный водород.

Ниже 830°C более сильным восстановителем является CO, — выше — водород. Поэтому равновесие реакции:

H2O + CO ↔ CO2 + H2 + 42 кДж

до 830°С смещено вправо, выше 830°C влево.

Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Монооксид углерода горит синим пламенем (температура начала реакции 700°C) на воздухе:

CO + 1/2O2 → 2CO2 ΔG°298 = −257 кДж, ΔS°298 = −86 Дж/K

Температура горения CO может достигать 2100°C, она является цепной, причём инициаторами служат небольшие количества водородсодержащих соединений (вода, аммиак, сероводород и др.)

Благодаря такой хорошей теплотворной способности, CO является компонентом разных технических газовых смесей (см., например генераторный газ), используемых, в том числе, для отопления.

Монооксид углерода реагирует с галогенами. Наибольшее практическое применение получила реакция с хлором:

CO + Cl2 → COCl2

Реакция экзотермическая, её тепловой эффект 113 кДж, в присутствии катализатора (активированный уголь) она идёт уже при комнатной температуре. В результате реакции образуется фосген — вещество, получившее широкое распространение в разных отраслях химии (а также как боевое отравляющее вещество). По аналогичным реакцииям могут быть получены COF2 (карбонилфторид) и COBr2 (карбонилбромид). Карбонилиодид не получен. Экзотермичность реакций быстро снижается от F к I (для реакций с F2 тепловой эффект 481 кДж, с Br2 — 4 кДж). Можно также получать и смешанные производные, например COFCl (подробнее см. галогенпроизводные угольной кислоты).

Реакцией CO с F2, кроме карбонилфторида можно получить перекисное соединение (FCO2)2O2. Его характеристики: температура плавления −42°C, кипения +16°C, обладает характерным запахом (похожим на запах озона), при нагревании выше 200°C разлагается со взрывом (продукты реакции CO2, O2 и COF2), в кислой среде реагирует с иодидом калия по уравнению:

(FCO2)2O2 + 2KI → 2KF + I2 + 2CO2

Монооксид углерода реагирует с халькогенами. С серой образует сероксид углерода COS, реакция идёт при нагревании, по уравнению:

CO + S → COS ΔG°298 = −229 кДж, ΔS°298 = −134 Дж/K

Получены также аналогичные селеноксид COSe и телуроксид COTe.

C переходными металлами образует очень летучие, горючие и ядовитые соединения — карбонилы, такие как Cr(CO)6, Ni(CO)4, Mn2CO10, Co2(CO)9 и др.

Как указано выше, монооксид углерода незначительно растворяется в воде, однако не реагирует с ней. Также он не вступает в реакции с растворами щелочей и кислот. Однако с расплавми щелочей вступает в реакцию:

CO + KOH → HCOOK

Интереcна реакция монооксида углерода с металлическим калием. При этом образуется взрывчатое соединение K6C6O2 (трихинон).

Реакцией с аммиаком при высоких температурах можно получить важное для промышленности соединение — циановодород HCN. Реакция идёт в присутствии катализатора (оксид тория ThO2) по уравнению:

CO + NH3 → H2O + HCN

Определение монооксида углеродаПравить

Качественно можно определить наличие CO по потемнению растворов хлорида палладия (или пропитанной этим раствором бумаги). Потеменение связано с выделением мелкодисперсного металлического палладия по схеме:

PdCl2 + H2O + CO → CO2 + 2HCl + Pd↓

Эта реакция очень чуствительная. Стандартный раствор 1 грамм хлорида палладия на литр воды.

Количественное определение монооксида углерода основано на иодометрической реакции:

5CO + I2O5 → 5CO2 + I2

ПрименениеПравить

  • Оксид углерода применяется для обработки мяса животных и рыбы, придает им ярко красный цвет и вид свежести не изменяя вкуса (Clear smoke or Tastless smoke технология). Допустимая концентрация CO равна 200 μg/kg мяса[1]
    • Литература
      • 1. Ishiwata H. et al. "Concnetration of Carbon Monoxid in Comercial Fish Flesh and in Fish Flesh Exposed to Carbon Monoxid Gas fro Colour Fixing", J. Food Hyg . Soc. Japan 1996, 37, 83-90

См. такжеПравить

СсылкиПравить