Скорость гравитации
Скорость гравитации — скорость распространения гравитационных воздействий, возмущений и волн. В квантовых теориях гравитации под скоростью гравитации подразумевают скорость гравитонов как наименьших частиц (квантов) поля.
Скорость гравитации в физических теорияхПравить
В теории гравитации Ньютона скорость гравитации не входит ни в одну формулу, считаясь бесконечно большой.
В общей теория относительности (ОТО) потенциалами гравитационного поля выступают компоненты метрического тензора, так что гравитационное поле отождествляется в сущности с метрическим полем. Соответственно, скорость гравитации есть скорость, с которой изменяется метрика. В ОТО для скорости гравитации принимается, что
В лоренц-инвариантной теории гравитации (ЛИТГ) [1] скорость гравитации содержится непосредственно в исходных уравнениях теории, записанных в международной системе единиц СИ:
здесь:
есть напряжённость гравитационного поля или ускорение поля, — гравитационная постоянная, есть поле кручения, — плотность тока массы, — плотность массы, — скорость движения потока массы, создающего гравитационное поле и кручение.
Уравнения ЛИТГ почти точно совпадают с уравнениями ОТО в пределе малого поля [2], смотри гравимагнетизм, с тем исключением, что в ОТО вместо скорости
С точки зрения теории бесконечной вложенности материи, на разных уровнях материи могут действовать различные виды гравитации (примером является сильная гравитация, предполагаемая на уровне атомов). При этом скорость соответствующей гравитации может отличаться от скорости света.
Эксперименты по определению скорости гравитацииПравить
Поскольку скорость гравитации в уравнениях присутствует в членах, ответственных за кручение поля
Другой способ измерения скорости гравитации вытекает из измерений скорости прецессии гироскопа в поле кручения. Определение прецессии гироскопа вблизи полюса Земли в 2004‒2005 г.г. было одной из задач на спутнике Gravity Probe B. Как в ОТО, так и в ЛИТГ в системе единиц СИ угловая скорость прецессии равна
где
Третий способ измерения скорости гравитации связан с фиксацией гравитационных волн от далёких звёздных источников одновременно со световым сигналом. Это позволяет сравнить скорость гравитации со скоростью света. 11 февраля 2016 года было объявлено об экспериментальном открытии гравитационных волн коллаборациями LIGO и VIRGO.[4][5][6] Анализ события GW150914 на дисперсию гравитационных волн в зависимости от частоты даёт оценку сверху на массу гравитона: mg ≤ 1,2 × 10−22 eV/c² = 2,1 × 10−58 кг, что соответствует оценке снизу на скорость гравитона для частоты 35 Гц: vg/c ≤ 1 — 10−18, а также оценке фактора Лоренца для гравитона
Четвёртый способ связан с экспериментом, в котором задействованы свинцовый сверхпроводящий диск диаметром 9,1 см и очень большой кольцевой лазерный гироскоп UG-2, порядка 35 метров в диаметре, расположенный в экваториальной плоскости диска.[10]
При вращении свинцового диска вокруг него генерируется поле кручения
где:
Определяя кручение, можно оценить скорость гравитации. Однако прибор требует предварительной калибровки, чтобы соотнести сдвиг частоты кольцевого лазерного гироскопа и величину возникающего при вращении диска кручения.
СсылкиПравить
- ↑ Федосин С. Г. Физика и философия подобия от преонов до метагалактик, Пермь: Стиль-МГ, 1999, ISBN 5-8131-0012-1. 544 стр., Табл.66, Ил.93, Библ. 377 назв.
- ↑ Федосин С. Г. Физические теории и бесконечная вложенность материи, Пермь, 2009, 844 стр., Табл. 21, Ил.41, Библ. 289 назв. ISBN 978-5-9901951-1-0.
- ↑ Fomalont E.B., Kopeikin S.M. The Measurement of the Light Deflection from Jupiter: Experimental Results (2003), Astrophys. J., 598, 704. (astro-ph/0302294)
- ↑ "GRAVITATIONAL WAVES DETECTED 100 YEARS AFTER EINSTEIN'S PREDICTION". VIRGO. Дата обращения: 11 февраля 2016.
- ↑ Emanuele Berti (11 февраля 2016). "Viewpoint: The First Sounds of Merging Black Holes". Physical Review Letters. Дата обращения: 11 февраля 2016.
- ↑ B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters 116 (6). DOI:10.1103/PhysRevLett.116.061102.
- ↑ Abbott, Benjamin P. (2016-02-11). "Tests of general relativity with GW150914". LIGO. Дата обращения: 2016-02-12.
- ↑ Fedosin S.G. The graviton field as the source of mass and gravitational force in the modernized Le Sage’s model. Physical Science International Journal, ISSN 2348-0130, Vol. 8, Issue 4, pp. 1‒18 (2015). http://dx.doi.org/10.9734/PSIJ/2015/22197; статья на русском языке: Поле гравитонов как источник гравитационной силы и массы в модернизированной модели Лесажа.
- ↑ Fedosin S.G. The charged component of the vacuum field as the source of electric force in the modernized Le Sage’s model. Journal of Fundamental and Applied Sciences, Vol. 8, No. 3, pp. 971‒1020 (2016). http://dx.doi.org/10.4314/jfas.v8i3.18, https://dx.doi.org/10.5281/zenodo.845357. // Заряженная компонента вакуумного поля как источник электрической силы в модернизированной модели Лесажа.
- ↑ Graham, R.D., Hurst, R.B., Thirkettle, R.J., Rowe, C.H., and Butler, B.H., "Experiment to Detect Frame-Dragging in a Lead Superconductor, " (2007). [1]