Напряжённость гравитационного поля
Напряжённость гравитацио́нного по́ля — векторная физическая величина, характеризующая гравитационное поле в данной точке и численно равная отношению гравитационной силы
Данное определение сводит напряжённость поля к гравитационной силе, действующей на единичную массу. Существует и другое определение, когда напряжённость поля находится через пространственные и временные производные от потенциалов гравитационного поля либо через компоненты тензора гравитационного поля.[1]
Поскольку гравитационное поле представляет собой векторное поле, его напряжённость
Напряжённость гравитационного поля
В общей теории относительности напряжённость гравитационного поля называется напряжённостью гравитоэлектрического поля, а поле кручения соответствует гравитомагнитному полю. В пределе слабого гравитационного поля указанные величины входят в уравнения гравитоэлектромагнетизма.
Напряжённость гравитационного поля в международной системе единиц измеряется в метрах на секунду в квадрате [м/с²] или в ньютонах на килограмм [Н/кг].
Напряжённость гравитационного поля в лоренц-инвариантной теории гравитацииПравить
Если записывать соотношения лоренц-инвариантной теории гравитации (ЛИТГ) на языке 4-векторов и тензоров, то оказывается, что вектор напряжённости гравитационного поля
где
Гравитационная силаПравить
Полная сила, с которой гравитационное поле действует на пробную частицу, выражается следующей формулой:
где:
В данной формуле первый член силы пропорционален напряжённости гравитационного поля, а второй член силы зависит от скорости движения частицы и от поля кручения, действующего на частицу. При этом предполагается, что
Для расчёта полной силы, действующей на протяжённое тело, в пределах которого напряжённость и кручение гравитационного поля изменяются в значительных размерах, осуществляют разбиение тела на небольшие части, подсчитывают для каждой части свою силу и затем производят векторное суммирование всех таких сил.
Плотность вектора силы
где
Выражение для 4-вектора плотности гравитационной силы в лоренц-инвариантной теории гравитации можно представить через напряжённость гравитационного поля:
где
Из формулы видно, что произведение
Уравнения ХевисайдаПравить
Лоренц-ковариантные уравнения гравитации в инерциальных системах отсчёта можно найти в работах Оливера Хевисайда.[3] Они представляют собой четыре векторные дифференциальные уравнения, в три из которых входит вектор напряжённости гравитационного поля: [1]
где:
Данные четыре уравнения полностью описывают гравитационное поле для тех случаев, когда поле не настолько велико, чтобы влиять на распространение электромагнитных волн, на их скорость и частоту. В этих уравнениях источниками гравитационного поля являются плотность вещества и массовые токи, а формула для гравитационной силы в свою очередь показывает, как поле воздействует на вещество.
Если же гравитационное поле значительно по величине, то его влияние на электромагнитные процессы приводит к гравитационному красному смещению, замедлению времени, отклонению движения электромагнитных волн вблизи источников гравитационного поля, и к другим эффектам. Поскольку измерения времени и пространственных расстояний осуществляются с помощью электромагнитных волн, то в гравитационном поле для наблюдателя размеры тел могут оказаться меньше, а скорость течения времени замедлиться. Подобные эффекты учитываются путём введения метрики пространства-времени, зависящей от координат и времени. Поэтому в случае сильного гравитационного поля вместо указанных выше уравнений используются более общие уравнения ковариантной теории гравитации, либо уравнения общей теории относительности, в которых присутствует метрический тензор.
Если от первого уравнения Хевисайда взять градиент, а от четвёртого уравнения частную производную по времени, то в результате можно получить неоднородное волновое уравнение для напряжённости гравитационного поля:
Повторяя те же действия для второго и третьего уравнений, приходим к волновому уравнению для поля кручения:
Наличие волновых уравнений говорит о том, что напряжённость и кручение гравитационного поля в каждой точке могут быть найдены как суммы (интегралы) множества отдельных простых волн, делающих свой вклад в общее поле, при этом каждый вклад должен быть подсчитан с учётом запаздывания влияния источников поля за счёт ограниченности скорости передачи гравитационного воздействия.
Третье уравнение Хевисайда приводит к возможности гравитационной индукции, когда изменяющееся во времени поле кручения, проходящее через некоторый контур, или изменение площади контура при неизменном поле кручения, генерируют круговую напряжённость гравитационного поля вдоль окружности этого контура.
Потенциалы гравитационного поляПравить
Напряжённость гравитационного поля выражается как через скалярный потенциал
Поле кручения зависит только от векторного потенциала, поскольку:
ГравистатикаПравить
Наиболее простым случаем для исследования свойств гравитации является случай взаимодействия неподвижных либо движущихся с достаточно малой скоростью тел. В гравистатике пренебрегают векторным потенциалом
При условии, что в рассматриваемой физической системе нет массовых токов и потому
Если в (1) использовать соотношение
За пределами тел плотность покоящегося вещества равна нулю,
Уравнения Пуассона и Лапласа справедливы как для потенциала точечной частицы, так и для суммы потенциалов множества частиц, что приводит к возможности использовать принцип суперпозиции для расчёта суммарного потенциала и напряжённости общего гравитационного поля в любой точке системы. Однако в достаточно сильных полях из модернизированной теории гравитации Лесажа следует, что принцип суперпозиции нарушается из-за экспоненциальной зависимости потоков гравитонов в веществе от пройденного расстояния.[4]
Применение формулы Гаусса—ОстроградскогоПравить
Уравнение (1) можно проинтегрировать по произвольному объёму пространства и затем применить формулу Гаусса—Остроградского, заменяющую интеграл от дивергенции векторной функции по некоторому объёму на интеграл потока этой векторной функции по замкнутой поверхности вокруг данного объёма:
Во многих случаях оказывается, что поток напряжённости гравитационного поля на поверхности неизменен, что позволяет вынести напряжённость поля
Данная формула остаётся справедливой независимо от радиуса тела сферической формы, пока этот радиус не превышает
В случае, когда формула Гаусса—Остроградского применяется к сферической поверхности внутри тела со сферически симметричным расположением массы, из формулы следует, что напряжённость гравитационного поля внутри тела зависит только от массы тела
Для сферы с однородной плотностью вещества масса
В центре сферы, где
Классическая теория тяготенияПравить
Выражение для напряжённости гравитационного поля материальной точки можно получить также из закона Ньютона для силы гравитации, действующей на частицу с массой
В классической теории скалярный потенциал гравитационного поля за пределами тела сферической формы равен:
Применяя формулу
Если считать справедливым принцип эквивалентности, при котором гравитационная масса пробной частицы равна инертной массе этой частицы во втором законе Ньютона, то получается следующее:
См. такжеПравить
- Поле кручения
- Максвеллоподобные гравитационные уравнения
- Гравитоэлектромагнетизм
- Лоренц-инвариантная теория гравитации
- Ковариантная теория гравитации
- Тензор гравитационного поля
- Вектор Хевисайда
- Тензор энергии-импульса гравитационного поля
- Гравитационный 4-потенциал
- Напряжённость электрического поля
СсылкиПравить
- ↑ Fedosin S.G. Electromagnetic and Gravitational Pictures of the World. Apeiron, 2007, Vol. 14, No. 4, P. 385—413; статья на русском языке: Электромагнитная и гравитационная картины мира.
- ↑ Федосин С. Г. Физика и философия подобия от преонов до метагалактик, Пермь: Стиль-МГ, 1999, ISBN 5-8131-0012-1. 544 стр., Табл.66, Ил.93, Библ. 377 назв.
- ↑ Oliver Heaviside. A Gravitational and Electromagnetic Analogy, Part I, The Electrician, 31, 281‒282 (1893).
- ↑ Fedosin S.G. Model of Gravitational Interaction in the Concept of Gravitons. Journal of Vectorial Relativity, March 2009, Vol. 4, No. 1, P.1 — 24, статья на русском языке: Модель гравитационного взаимодействия в концепции гравитонов.