Тензор энергии-импульса поля диссипации
Тензор энергии-импульса поля диссипации — симметричный четырёхмерный тензор второй валентности (ранга), описывающий плотность и поток энергии и импульса поля диссипации в веществе. Данный тензор в ковариантной теории гравитации входит в уравнение для определения метрики, наравне с тензором энергии-импульса гравитационного поля, с тензором энергии-импульса поля ускорений, с тензором энергии-импульса поля давления, и с аналогичным тензором электромагнитного поля. Ковариантная производная тензора энергии-импульса поля диссипации задаёт плотность силы диссипации, действующей в веществе и тормозящей движение потоков вещества друг относительно друга.
Тензор энергии-импульса поля диссипации является релятивистским обобщением трёхмерного тензора вязких напряжений, используемого в гидродинамике.
ГидродинамикаПравить
Для релятивистского описания уравнения движения вязкой и теплопроводной среды в книге [1] используется четырёхмерный тензор вязких напряжений:
где
Вид тензора находится из требований, налагаемых законом возрастания энтропии.
Данный тензор определяется таким образом, что в системе отсчёта, в которой движущийся элемент вещества покоится, компоненты тензора
Тензор
Уравнение движения вещества с давлением и вязкостью получается из равенства нулю ковариантной производной тензора энергии-импульса вещества:
Существенным недостатком тензора
Ковариантная теория гравитацииПравить
ОпределениеПравить
В ковариантной теории гравитации (КТГ) поле диссипации считается 4-векторным полем, состоящим из скалярной и 3-векторной компонент, и является компонентой общего поля. В КТГ тензор энергии-импульса поля диссипации определяется через тензор поля диссипации
где
Компоненты тензора энергии-импульса поля диссипацииПравить
В пределе слабого поля, когда метрика пространства-времени переходит в метрику пространства Минковского специальной теории относительности, метрический тензор
Временные компоненты тензора обозначают:
1) объёмная плотность энергии поля диссипации
2) вектор плотности импульса поля диссипации
Компоненты вектора
3) Пространственные компоненты тензора образуют 3 x 3 подматрицу, являющуюся 3-мерным тензором плотности потока импульса поля, или тензором напряжений поля диссипации, взятым со знаком минус. Тензор напряжений можно записать в следующем виде:
где
Трёхмерная дивергенция тензора напряжений поля диссипации связывает плотность силы диссипации и скорость изменения плотности импульса поля диссипации:
Cила диссипации и уравнения поля диссипацииПравить
Из принципа наименьшего действия следует, что 4-вектор плотности силы диссипации
Соотношение (1) тесно связано с уравнениями поля диссипации:
В рамках специальной теории относительности согласно (1) для компонент плотности 4-силы диссипации можно записать:
В пространстве Минковского уравнения поля диссипации преобразуются в 4 уравнения для напряжённости поля диссипации
Уравнение для метрикиПравить
В ковариантной теории гравитации тензор энергии-импульса поля диссипации в соответствии с принципами метрической теории относительности является одним из тензоров, определяющих метрику внутри тел посредством уравнения для метрики:
где
Уравнение движенияПравить
Уравнение движения точечной частицы внутри или за пределами вещества может быть представлено в тензорном виде, с участием тензора энергии-импульса диссипации
где
Временная компонента уравнения (2) при
Законы сохраненияПравить
Временную компоненту в (2) можно рассматривать как локальный закон сохранения энергии-импульса. В пределе специальной теории относительности, когда ковариантная производная становится 4-градиентом, а символы Кристоффеля обращаются в нуль, этот закон сохранения приобретает простой вид: [3] [4]
где
Согласно данному закону, работа поля по ускорению масс и зарядов компенсируется работой вещества по созданию поля. В результате изменение во времени суммы тензорных компонент с плотностью энергии в некотором объёме возможно только за счёт втекания в этот объём потоков энергии.
Интегральная форма закона сохранения энергии-импульса получается путём интегрирования уравнения (2) по всему 4-объёму, чтобы учесть энергию-импульс гравитационного и электромагнитного полей, простирающихся далеко за пределы рассматриваемой физической системы. При интегрировании (2) применяется формула Гаусса-Остроградского, которая заменяет интегрирование дивергенции суммы тензоров по 4-объёму на интегрирование суммы временных компонент тензоров по 3-объёму. В результате в лоренцевых координатах получается интегральный вектор, равный нулю:
Равенство нулю интегрального вектора позволяет объяснить проблему 4/3, согласно которой масса-энергия поля в импульсе поля движущейся системы в 4/3 больше, чем в энергии поля неподвижной системы. С другой стороны, согласно [4] обобщённая теорема Пойнтинга и интегральный вектор должны рассматриваться по разному в веществе и за его пределами. В результате возникновение проблемы 4/3 связывается с тем, что временные компоненты тензоров энергии-импульса не образуют 4-векторы и потому принципиально не могут задавать одну и ту же массу в энергии и в импульсе полей.
См. такжеПравить
СсылкиПравить
- ↑ Ландау Л. Д., Лифшиц Е. М. Гидродинамика. – Издание 7-е, исправленное. – М.: Наука, 1988. – 731 с. – (Теоретическая физика, том VI).
- ↑ Fedosin S.G. Four-Dimensional Equation of Motion for Viscous Compressible and Charged Fluid with Regard to the Acceleration Field, Pressure Field and Dissipation Field. International Journal of Thermodynamics. Vol. 18 (No. 1), pp. 13-24 (2015). http://dx.doi.org/10.5541/ijot.5000034003; статья на русском языке: Федосин С. Г. Четырёхмерное уравнение движения вязкого сжимаемого вещества с учётом поля ускорений, поля давления и поля диссипации.
- ↑ Fedosin S.G. The Integral Energy-Momentum 4-Vector and Analysis of 4/3 Problem Based on the Pressure Field and Acceleration Field. American Journal of Modern Physics. Vol. 3, No. 4, pp. 152-167 (2014). http://dx.doi.org/10.11648/j.ajmp.20140304.12 ; статья на русском языке: Интегральный 4-вектор энергии-импульса и анализ проблемы 4/3 на основе поля давления и поля ускорений.
- ↑ а б Fedosin S.G. The generalized Poynting theorem for the general field and solution of the 4/3 problem. International Frontier Science Letters, Vol. 14, pp. 19-40 (2019). https://doi.org/10.18052/www.scipress.com/IFSL.14.19. // Обобщённая теорема Пойнтинга для общего поля и решение проблемы 4/3.